On the difficulty of training Recurrent Neural Networks中RNN完美复现

大家好!我复现的代码是用RNN实现句子生成器,来自paper 'On the difficulty of training Recurrent Neural Networks'.

之前寒小阳老师有篇博客(http://blog.csdn.net/han_xiaoyang/article/details/51253274)是复现这个代码,但是运行不出的,有些细节省略了。我经过一个下午琢磨终于running-Ok!!!

首先给出原文地址:https://arxiv.org/abs/1211.5063

数据集:reddit-comments-2015-08.csv(https://github.com/dennybritz/rnn-tutorial-rnnlm/tree/master/data)


100%可运行代码(python):

RNN部分:

# coding:utf-8
import csv
import itertools
import operator
import timeit

import nltk
import numpy as np
import sys

import utils
from datetime import datetime

'''词向量映射 '''
vocabulary_size = 8000
unknown_token = "UNKNOWN_TOKEN"
sentence_start_token = "SENTENCE_START"
sentence_end_token = "SENTENCE_END"

# 读取数据,添加SENTENCE_START和SENTENCE_END在开头和结尾
print "Reading CSV file..."
with open('C:/Users/admin/Desktop/test_txt/reddit-comments-2015-08.csv', 'rb') as f:
    reader = csv.reader(f, skipinitialspace=True)
    reader.next()
    # 分句
    sentences = itertools.chain(*[nltk.sent_tokenize(x[0].decode('utf-8').lower()) for x in reader])
    # 添加SENTENCE_START和SENTENCE_END
    sentences = ["%s %s %s" % (sentence_start_token, x, sentence_end_token) for x in sentences]
print "Parsed %d sentences." % (len(sentences))

# 分词
tokenized_sentences = [nltk.word_tokenize(sent) for sent in sentences]

# 统计词频
word_freq = nltk.FreqDist(itertools.chain(*tokenized_sentences))
print "Found %d unique words tokens." % len(word_freq.items())

# 取出高频词构建词到位置,和位置到词的索引
vocab = word_freq.most_common(vocabulary_size-1)
index_to_word = [x[0] for x in vocab]
index_to_word.append(unknown_token)
word_to_index = dict([(w,i) for i,w in enumerate(index_to_word)])

print "Using vocabulary size %d." % vocabulary_size
print "The least frequent word in our vocabulary is '%s' and appeared %d times." % (vocab[-1][0], vocab[-1][1])

# 把所有词表外的词都标记为unknown_token
for i, sent in enumerate(tokenized_sentences):
    tokenized_sentences[i] = [w if w in word_to_index else unknown_token for w in sent]

print "\nExample sentence: '%s'" % sentences[0]
print "\nExample sentence after Pre-processing: '%s'" % tokenized_sentences[0]

# 构建完整训练集
X_train = np.asarray([[word_to_index[w] for w in sent[:-1]] for sent in tokenized_sentences])
y_train = np.asarray([[word_to_index[w] for w in sent[1:]] for sent in tokenized_sentences])
print X_train
'''构建RNN '''
#初始化参数:U,V和W
class RNNNumpy:

    def __init__(self, word_dim, hidden_dim=100, bptt_truncate=4):
        # 给词表大小,隐状态维度等赋值
        self.word_dim = word_dim
        self.hidden_dim = hidden_dim
        self.bptt_truncate = bptt_truncate
        # 随机初始化参数U,V,W
        self.U = np.random.uniform(-np.sqrt(1./word_dim), np.sqrt(1./word_dim), (hidden_dim, word_dim))
        self.V = np.random.uniform(-np.sqrt(1./hidden_dim), np.sqrt(1./hidden_dim), (word_dim, hidden_dim))
        self.W = np.random.uniform(-np.sqrt(1./hidden_dim), np.sqrt(1./hidden_dim), (hidden_dim, hidden_dim))
#前向计算:根据权重计算下一层/下一个时间点的输出、隐状态的过程(简单实现)
def forward_propagation(self, x):
    # 总共的 序列/时间 长度
    T = len(x)
    # 在前向计算时,我们保留所有的时间隐状态s,因为之后会用到
    # 初始的隐状态设为 0
    s = np.zeros((T + 1, self.hidden_dim))
    s[-1] = np.zeros(self.hidden_dim)
    # 在前向计算时,我们也保留所有的时间点输出o,之后也会用到
    o = np.zeros((T, self.word_dim))
    # 每个时间/序列点 进行运算
    for t in np.arange(T):
        # one-hot编码矩阵乘法,可以视作列选择
        s[t] = np.tanh(self.U[:,x[t]] + self.W.dot(s[t-1]))
        o[t] = utils.softmax(self.V.dot(s[t]))
    return [o, s]

RNNNumpy.forward_propagation = forward_propagation
#取最大概率那个词
def predict(self, x):
    # 做前向计算,取概率最高的词下标
    o, s = self.forward_propagation(x)
    return np.argmax(o, axis=1)
RNNNumpy.predict = predict
#试跑一下
np.random.seed(10)
model = RNNNumpy(vocabulary_size)
o, s = model.forward_propagation(X_train[2])
print o.shape
print o
#验证下predict函数
predictions = model.predict(X_train[10])
print predictions.shape
print predictions
#计算损失函数
def calculate_total_loss(self, x, y):
    L = 0
    # 对于每句话
    for i in np.arange(len(y)):
        o, s = self.forward_propagation(x[i])
        # 我们只在乎预测对的那个词的概率
        correct_word_predictions = o[np.arange(len(y[i])), y[i]]
        # 加到总loss里
        L += -1 * np.sum(np.log(correct_word_predictions))
    return L

def calculate_loss(self, x, y):
    # 除以总样本数
    N = np.sum((len(y_i) for y_i in y))
    return self.calculate_total_loss(x,y)/N

RNNNumpy.calculate_total_loss = calculate_total_loss
RNNNumpy.calculate_loss = calculate_loss
#用随机梯度下降和时间反向传播训练RNN
def bptt(self, x, y):
    T = len(y)
    # 反向计算
    o, s = self.forward_propagation(x)
    # We accumulate the gradients in these variables
    dLdU = np.zeros(self.U.shape)
    dLdV = np.zeros(self.V.shape)
    dLdW = np.zeros(self.W.shape)
    delta_o = o
    delta_o[np.arange(len(y)), y] -= 1.
    # For each output backwards...
    for t in np.arange(T)[::-1]:
        dLdV += np.outer(delta_o[t], s[t].T)
        # Initial delta calculation
        delta_t = self.V.T.dot(delta_o[t]) * (1 - (s[t] ** 2))
        # Backpropagation through time (for at most self.bptt_truncate steps)
        for bptt_step in np.arange(max(0, t-self.bptt_truncate), t+1)[::-1]:
            # print "Backpropagation step t=%d bptt step=%d " % (t, bptt_step)
            dLdW += np.outer(delta_t, s[bptt_step-1])
            dLdU[:,x[bptt_step]] += delta_t
            # 每一步更新delta
            delta_t = self.W.T.dot(delta_t) * (1 - s[bptt_step-1] ** 2)
    return [dLdU, dLdV, dLdW]

RNNNumpy.bptt = bptt
#Gradient Checking
def gradient_check(self, x, y, h=0.001, error_threshold=0.01):
    # Calculate the gradients using backpropagation. We want to checker if these are correct.
    bptt_gradients = model.bptt(x, y)
    # List of all parameters we want to check.
    model_parameters = ['U', 'V', 'W']
    # Gradient check for each parameter
    for pidx, pname in enumerate(model_parameters):
        # Get the actual parameter value from the mode, e.g. model.W
        parameter = operator.attrgetter(pname)(self)
        print "Performing gradient check for parameter %s with size %d." % (pname, np.prod(parameter.shape))
        # Iterate over each element of the parameter matrix, e.g. (0,0), (0,1), ...
        it = np.nditer(parameter, flags=['multi_index'], op_flags=['readwrite'])
        while not it.finished:
            ix = it.multi_index
            # Save the original value so we can reset it later
            original_value = parameter[ix]
            # Estimate the gradient using (f(x+h) - f(x-h))/(2*h)
            parameter[ix] = original_value + h
            gradplus = model.calculate_total_loss([x],[y])
            parameter[ix] = original_value - h
            gradminus = model.calculate_total_loss([x],[y])
            estimated_gradient = (gradplus - gradminus)/(2*h)
            # Reset parameter to original value
            parameter[ix] = original_value
            # The gradient for this parameter calculated using backpropagation
            backprop_gradient = bptt_gradients[pidx][ix]
            # calculate The relative error: (|x - y|/(|x| + |y|))
            relative_error = np.abs(backprop_gradient - estimated_gradient)/(np.abs(backprop_gradient) + np.abs(estimated_gradient))
            # If the error is to large fail the gradient check
            if relative_error > error_threshold:
                print "Gradient Check ERROR: parameter=%s ix=%s" % (pname, ix)
                print "+h Loss: %f" % gradplus
                print "-h Loss: %f" % gradminus
                print "Estimated_gradient: %f" % estimated_gradient
                print "Backpropagation gradient: %f" % backprop_gradient
                print "Relative Error: %f" % relative_error
                return
            it.iternext()
        print "Gradient check for parameter %s passed." % (pname)

RNNNumpy.gradient_check = gradient_check

# To avoid performing millions of expensive calculations we use a smaller vocabulary size for checking.
grad_check_vocab_size = 100
np.random.seed(10)
model = RNNNumpy(grad_check_vocab_size, 10, bptt_truncate=1000)
model.gradient_check([0,1,2,3], [1,2,3,4])
#SGD Implementation
# Performs one step of SGD.
def numpy_sdg_step(self, x, y, learning_rate):
    # Calculate the gradients
    dLdU, dLdV, dLdW = self.bptt(x, y)
    # Change parameters according to gradients and learning rate
    self.U -= learning_rate * dLdU
    self.V -= learning_rate * dLdV
    self.W -= learning_rate * dLdW

RNNNumpy.sgd_step = numpy_sdg_step
#根据梯度来迭代和更新参数,也就是要顺着坡度方向下山
# Outer SGD Loop
# - model: The RNN model instance
# - X_train: The training data set
# - y_train: The training data labels
# - learning_rate: Initial learning rate for SGD
# - nepoch: Number of times to iterate through the complete dataset
# - evaluate_loss_after: Evaluate the loss after this many epochs
def train_with_sgd(model, X_train, y_train, learning_rate=0.005, nepoch=100, evaluate_loss_after=5):
    # We keep track of the losses so we can plot them later
    """

    :type model: object
    """
    losses = []
    num_examples_seen = 0
    for epoch in range(nepoch):
        # Optionally evaluate the loss
        if (epoch % evaluate_loss_after == 0):
            loss = model.calculate_loss(X_train, y_train)
            losses.append((num_examples_seen, loss))
            time = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
            print "%s: Loss after num_examples_seen=%d epoch=%d: %f" % (time, num_examples_seen, epoch, loss)
            # Adjust the learning rate if loss increases
            if (len(losses) > 1 and losses[-1][1] > losses[-2][1]):
                learning_rate = learning_rate * 0.5
                print "Setting learning rate to %f" % learning_rate
            sys.stdout.flush()
        # For each training example...
        for i in range(len(y_train)):
            # One SGD step
            model.sgd_step(X_train[i], y_train[i], learning_rate)
            num_examples_seen += 1

# 在小样本集上试试
np.random.seed(10)
# 在小样本集上试试
model = RNNNumpy(vocabulary_size)
losses = train_with_sgd(model, X_train[:100], y_train[:100], nepoch=10, evaluate_loss_after=1)
#Training our Network with Theano and the GPU
from rnn_theano import RNNTheano, gradient_check_theano
np.random.seed(10)
# To avoid performing millions of expensive calculations we use a smaller vocabulary size for checking.
grad_check_vocab_size = 5
model = RNNTheano(grad_check_vocab_size, 10)
gradient_check_theano(model, [0,1,2,3], [1,2,3,4])
np.random.seed(10)
model = RNNTheano(vocabulary_size)
model.sgd_step(X_train[10], y_train[10], 0.005)
model = RNNTheano(vocabulary_size, hidden_dim=50)
# losses = train_with_sgd(model, X_train, y_train, nepoch=50)
# save_model_parameters_theano('./data/trained-model-theano.npz', model)
utils.load_model_parameters_theano('C:/Users/admin/Desktop/test_txt/trained-model-theano.npz', model)
#Generating Text
def generate_sentence(model):
    # We start the sentence with the start token
    new_sentence = [word_to_index[sentence_start_token]]
    # Repeat until we get an end token
    while not new_sentence[-1] == word_to_index[sentence_end_token]:
        next_word_probs = model.forward_propagation(new_sentence)
        sampled_word = word_to_index[unknown_token]
        # We don't want to sample unknown words
        while sampled_word == word_to_index[unknown_token]:
            samples = np.random.multinomial(1, next_word_probs[-1])
            sampled_word = np.argmax(samples)
        new_sentence.append(sampled_word)
    sentence_str = [index_to_word[x] for x in new_sentence[1:-1]]
    return sentence_str


num_sentences = 20
senten_min_length = 10

for i in range(num_sentences):
    sent = []
    # We want long sentences, not sentences with one or two words
    while len(sent) < senten_min_length:
        sent = generate_sentence(model)
    print " ".join(sent)
-------------------------------------------------------------------------------------------------------

被调用函数:

utils.py

import numpy as np


def softmax(x):
    xt = np.exp(x - np.max(x))
    return xt / np.sum(xt)


def save_model_parameters_theano(outfile, model):
    U, V, W = model.U.get_value(), model.V.get_value(), model.W.get_value()
    np.savez(outfile, U=U, V=V, W=W)
    print "Saved model parameters to %s." % outfile


def load_model_parameters_theano(path, model):
    npzfile = np.load(path)
    U, V, W = npzfile["U"], npzfile["V"], npzfile["W"]
    model.hidden_dim = U.shape[0]
    model.word_dim = U.shape[1]
    model.U.set_value(U)
    model.V.set_value(V)
    model.W.set_value(W)
    print "Loaded model parameters from %s. hidden_dim=%d word_dim=%d" % (path, U.shape[0], U.shape[1])
-------------------------------------------------------------------------------------------------------

被调用函数:

rnn_theano.py
import numpy as np
import theano as theano
import theano.tensor as T
from utils import *
import operator


class RNNTheano:
    def __init__(self, word_dim, hidden_dim=100, bptt_truncate=4):
        # Assign instance variables
        self.word_dim = word_dim
        self.hidden_dim = hidden_dim
        self.bptt_truncate = bptt_truncate
        # Randomly initialize the network parameters
        U = np.random.uniform(-np.sqrt(1. / word_dim), np.sqrt(1. / word_dim), (hidden_dim, word_dim))
        V = np.random.uniform(-np.sqrt(1. / hidden_dim), np.sqrt(1. / hidden_dim), (word_dim, hidden_dim))
        W = np.random.uniform(-np.sqrt(1. / hidden_dim), np.sqrt(1. / hidden_dim), (hidden_dim, hidden_dim))
        # Theano: Created shared variables
        self.U = theano.shared(name='U', value=U.astype(theano.config.floatX))
        self.V = theano.shared(name='V', value=V.astype(theano.config.floatX))
        self.W = theano.shared(name='W', value=W.astype(theano.config.floatX))
        # We store the Theano graph here
        self.theano = {}
        self.__theano_build__()

    def __theano_build__(self):
        U, V, W = self.U, self.V, self.W
        x = T.ivector('x')
        y = T.ivector('y')

        def forward_prop_step(x_t, s_t_prev, U, V, W):
            s_t = T.tanh(U[:, x_t] + W.dot(s_t_prev))
            o_t = T.nnet.softmax(V.dot(s_t))
            return [o_t[0], s_t]

        [o, s], updates = theano.scan(
            forward_prop_step,
            sequences=x,
            outputs_info=[None, dict(initial=T.zeros(self.hidden_dim))],
            non_sequences=[U, V, W],
            truncate_gradient=self.bptt_truncate,
            strict=True)

        prediction = T.argmax(o, axis=1)
        o_error = T.sum(T.nnet.categorical_crossentropy(o, y))

        # Gradients
        dU = T.grad(o_error, U)
        dV = T.grad(o_error, V)
        dW = T.grad(o_error, W)

        # Assign functions
        self.forward_propagation = theano.function([x], o)
        self.predict = theano.function([x], prediction)
        self.ce_error = theano.function([x, y], o_error)
        self.bptt = theano.function([x, y], [dU, dV, dW])

        # SGD
        learning_rate = T.scalar('learning_rate')
        self.sgd_step = theano.function([x, y, learning_rate], [],
                                        updates=[(self.U, self.U - learning_rate * dU),
                                                 (self.V, self.V - learning_rate * dV),
                                                 (self.W, self.W - learning_rate * dW)])

    def calculate_total_loss(self, X, Y):
        return np.sum([self.ce_error(x, y) for x, y in zip(X, Y)])

    def calculate_loss(self, X, Y):
        # Divide calculate_loss by the number of words
        num_words = np.sum([len(y) for y in Y])
        return self.calculate_total_loss(X, Y) / float(num_words)


def gradient_check_theano(model, x, y, h=0.001, error_threshold=0.01):
    # Overwrite the bptt attribute. We need to backpropagate all the way to get the correct gradient
    model.bptt_truncate = 1000
    # Calculate the gradients using backprop
    bptt_gradients = model.bptt(x, y)
    # List of all parameters we want to chec.
    model_parameters = ['U', 'V', 'W']
    # Gradient check for each parameter
    for pidx, pname in enumerate(model_parameters):
        # Get the actual parameter value from the mode, e.g. model.W
        parameter_T = operator.attrgetter(pname)(model)
        parameter = parameter_T.get_value()
        print "Performing gradient check for parameter %s with size %d." % (pname, np.prod(parameter.shape))
        # Iterate over each element of the parameter matrix, e.g. (0,0), (0,1), ...
        it = np.nditer(parameter, flags=['multi_index'], op_flags=['readwrite'])
        while not it.finished:
            ix = it.multi_index
            # Save the original value so we can reset it later
            original_value = parameter[ix]
            # Estimate the gradient using (f(x+h) - f(x-h))/(2*h)
            parameter[ix] = original_value + h
            parameter_T.set_value(parameter)
            gradplus = model.calculate_total_loss([x], [y])
            parameter[ix] = original_value - h
            parameter_T.set_value(parameter)
            gradminus = model.calculate_total_loss([x], [y])
            estimated_gradient = (gradplus - gradminus) / (2 * h)
            parameter[ix] = original_value
            parameter_T.set_value(parameter)
            # The gradient for this parameter calculated using backpropagation
            backprop_gradient = bptt_gradients[pidx][ix]
            # calculate The relative error: (|x - y|/(|x| + |y|))
            relative_error = np.abs(backprop_gradient - estimated_gradient) / (
            np.abs(backprop_gradient) + np.abs(estimated_gradient))
            # If the error is to large fail the gradient check
            if relative_error > error_threshold:
                print "Gradient Check ERROR: parameter=%s ix=%s" % (pname, ix)
                print "+h Loss: %f" % gradplus
                print "-h Loss: %f" % gradminus
                print "Estimated_gradient: %f" % estimated_gradient
                print "Backpropagation gradient: %f" % backprop_gradient
                print "Relative Error: %f" % relative_error
                return
            it.iternext()


    print "Gradient check for parameter %s passed." % (pname)
-------------------------------------------------------------------------------------------------------

运行环境:Win10 64bit+python2.7

结果截图:


猜你喜欢

转载自blog.csdn.net/rcsreg/article/details/78733857