《动手学深度学习》Pytorch版学习笔记(三):Task06

课程背景

在疫情的影响下,不少学校已经做出了延迟开学的决定,:伯禹教育Datawhale和鲸科技牵头与多家AI企业合作,让在家的同学也能免费学习优质的付费课程,同时为学习者创建好的学习环境,提供就业绿色通道。

主修课程

《动手学深度学习》 代码讲解Pytorch版:该书是2019年国内最受欢迎的人工智能学习教材之一,是一本面向中文读者的能运行、可讨论的深度学习教科书,书籍作者之一亚马逊首席科学家李沐,毕业于上海交大。伯禹教育携手上海交通大学团队,基于此书籍,将其中的代码框架由MXNET迁移至PyTorch,并对这些代码制作了讲解视频。帮助大家边动手写代码边巩固理论知识,从原理到实践,上手深度学习。

1 任务

【第三次打卡】内容(2月18日-25日)
1.Task06:NLP和CV选做
打卡时间:【2020-02-18 08:00 -- 2020-02-25 22:00】
打卡链接:学习开始放出

2 NLP——文本情感分类

2.1 项目介绍

文本分类是自然语言处理的一个常见任务,它把一段不定长的文本序列变换为文本的类别。本节关注它的一个子问题:使用文本情感分类来分析文本作者的情绪。这个问题也叫情感分析,并有着广泛的应用。

同搜索近义词和类比词一样,文本分类也属于词嵌入的下游应用。在本节中,我们将应用预训练的词向量和含多个隐藏层的双向循环神经网络与卷积神经网络,来判断一段不定长的文本序列中包含的是正面还是负面的情绪。后续内容将从以下几个方面展开:

  1. 文本情感分类数据集
  2. 使用循环神经网络进行情感分类
  3. 使用卷积神经网络进行情感分类
#导入包
import collections
import os
import random
import time
from tqdm import tqdm
import torch
from torch import nn
import torchtext.vocab as Vocab
import torch.utils.data as Data
import torch.nn.functional as F
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

2.2 文本情感分类数据集

我们使用斯坦福的IMDb数据集(Stanford’s Large Movie Review Dataset) 作为文本情感分类的数据集。

  • 读取数据
def read_imdb(folder='train', data_root="/home/kesci/input/IMDB2578/aclImdb_v1/aclImdb"):
    data = []
    for label in ['pos', 'neg']:
        folder_name = os.path.join(data_root, folder, label)
        for file in tqdm(os.listdir(folder_name)):
            with open(os.path.join(folder_name, file), 'rb') as f:
                review = f.read().decode('utf-8').replace('\n', '').lower()
                data.append([review, 1 if label == 'pos' else 0])
    random.shuffle(data)
    return data

DATA_ROOT = "/home/kesci/input/IMDB2578/aclImdb_v1/"
data_root = os.path.join(DATA_ROOT, "aclImdb")
train_data, test_data = read_imdb('train', data_root), read_imdb('test', data_root)

# 打印训练数据中的前五个sample
for sample in train_data[:5]:
    print(sample[1], '\t', sample[0][:50])
  • 预处理数据:读取数据后,我们先根据文本的格式进行单词的切分,再利用 torchtext.vocab.Vocab 创建词典。
def get_tokenized_imdb(data):
    '''
    @params:
        data: 数据的列表,列表中的每个元素为 [文本字符串,0/1标签] 二元组
    @return: 切分词后的文本的列表,列表中的每个元素为切分后的词序列
    '''
    def tokenizer(text):
        return [tok.lower() for tok in text.split(' ')]
    
    return [tokenizer(review) for review, _ in data]

def get_vocab_imdb(data):
    '''
    @params:
        data: 同上
    @return: 数据集上的词典,Vocab 的实例(freqs, stoi, itos)
    '''
    tokenized_data = get_tokenized_imdb(data)
    counter = collections.Counter([tk for st in tokenized_data for tk in st])
    return Vocab.Vocab(counter, min_freq=5)

vocab = get_vocab_imdb(train_data)
print('# words in vocab:', len(vocab))

词典和词语的索引创建好后,就可以将数据集的文本从字符串的形式转换为单词下标序列的形式,以待之后的使用。

def preprocess_imdb(data, vocab):
    '''
    @params:
        data: 同上,原始的读入数据
        vocab: 训练集上生成的词典
    @return:
        features: 单词下标序列,形状为 (n, max_l) 的整数张量
        labels: 情感标签,形状为 (n,) 的0/1整数张量
    '''
    max_l = 500  # 将每条评论通过截断或者补0,使得长度变成500

    def pad(x):
        return x[:max_l] if len(x) > max_l else x + [0] * (max_l - len(x))

    tokenized_data = get_tokenized_imdb(data)
    features = torch.tensor([pad([vocab.stoi[word] for word in words]) for words in tokenized_data])
    labels = torch.tensor([score for _, score in data])
    return features, labels
  • 创建数据迭代器:利用 torch.utils.data.TensorDataset,可以创建 PyTorch 格式的数据集,从而创建数据迭代器。
train_set = Data.TensorDataset(*preprocess_imdb(train_data, vocab))
test_set = Data.TensorDataset(*preprocess_imdb(test_data, vocab))

# 上面的代码等价于下面的注释代码
# train_features, train_labels = preprocess_imdb(train_data, vocab)
# test_features, test_labels = preprocess_imdb(test_data, vocab)
# train_set = Data.TensorDataset(train_features, train_labels)
# test_set = Data.TensorDataset(test_features, test_labels)

# len(train_set) = features.shape[0] or labels.shape[0]
# train_set[index] = (features[index], labels[index])

batch_size = 64
train_iter = Data.DataLoader(train_set, batch_size, shuffle=True)
test_iter = Data.DataLoader(test_set, batch_size)

for X, y in train_iter:
    print('X', X.shape, 'y', y.shape)
    break
print('#batches:', len(train_iter))

2.3 使用循环神经网络进行情感分类

  • 双向循环神经网络
class BiRNN(nn.Module):
    def __init__(self, vocab, embed_size, num_hiddens, num_layers):
        '''
        @params:
            vocab: 在数据集上创建的词典,用于获取词典大小
            embed_size: 嵌入维度大小
            num_hiddens: 隐藏状态维度大小
            num_layers: 隐藏层个数
        '''
        super(BiRNN, self).__init__()
        self.embedding = nn.Embedding(len(vocab), embed_size)
        
        # encoder-decoder framework
        # bidirectional设为True即得到双向循环神经网络
        self.encoder = nn.LSTM(input_size=embed_size, 
                                hidden_size=num_hiddens, 
                                num_layers=num_layers,
                                bidirectional=True)
        self.decoder = nn.Linear(4*num_hiddens, 2) # 初始时间步和最终时间步的隐藏状态作为全连接层输入
        
    def forward(self, inputs):
        '''
        @params:
            inputs: 词语下标序列,形状为 (batch_size, seq_len) 的整数张量
        @return:
            outs: 对文本情感的预测,形状为 (batch_size, 2) 的张量
        '''
        # 因为LSTM需要将序列长度(seq_len)作为第一维,所以需要将输入转置
        embeddings = self.embedding(inputs.permute(1, 0)) # (seq_len, batch_size, d)
        # rnn.LSTM 返回输出、隐藏状态和记忆单元,格式如 outputs, (h, c)
        outputs, _ = self.encoder(embeddings) # (seq_len, batch_size, 2*h)
        encoding = torch.cat((outputs[0], outputs[-1]), -1) # (batch_size, 4*h)
        outs = self.decoder(encoding) # (batch_size, 2)
        return outs

embed_size, num_hiddens, num_layers = 100, 100, 2
net = BiRNN(vocab, embed_size, num_hiddens, num_layers)
  • 加载预训练的词向量:由于预训练词向量的词典及词语索引与我们使用的数据集并不相同,所以需要根据目前的词典及索引的顺序来加载预训练词向量。
cache_dir = "/home/kesci/input/GloVe6B5429"
glove_vocab = Vocab.GloVe(name='6B', dim=100, cache=cache_dir)

def load_pretrained_embedding(words, pretrained_vocab):
    '''
    @params:
        words: 需要加载词向量的词语列表,以 itos (index to string) 的词典形式给出
        pretrained_vocab: 预训练词向量
    @return:
        embed: 加载到的词向量
    '''
    embed = torch.zeros(len(words), pretrained_vocab.vectors[0].shape[0]) # 初始化为0
    oov_count = 0 # out of vocabulary
    for i, word in enumerate(words):
        try:
            idx = pretrained_vocab.stoi[word]
            embed[i, :] = pretrained_vocab.vectors[idx]
        except KeyError:
            oov_count += 1
    if oov_count > 0:
        print("There are %d oov words." % oov_count)
    return embed

net.embedding.weight.data.copy_(load_pretrained_embedding(vocab.itos, glove_vocab))
net.embedding.weight.requires_grad = False # 直接加载预训练好的, 所以不需要更新它
  • 训练模型:训练时可以调用之前编写的 trainevaluate_accuracy 函数。
def evaluate_accuracy(data_iter, net, device=None):
    if device is None and isinstance(net, torch.nn.Module):
        device = list(net.parameters())[0].device 
    acc_sum, n = 0.0, 0
    with torch.no_grad():
        for X, y in data_iter:
            if isinstance(net, torch.nn.Module):
                net.eval()
                acc_sum += (net(X.to(device)).argmax(dim=1) == y.to(device)).float().sum().cpu().item()
                net.train()
            else:
                if('is_training' in net.__code__.co_varnames):
                    acc_sum += (net(X, is_training=False).argmax(dim=1) == y).float().sum().item() 
                else:
                    acc_sum += (net(X).argmax(dim=1) == y).float().sum().item() 
            n += y.shape[0]
    return acc_sum / n

def train(train_iter, test_iter, net, loss, optimizer, device, num_epochs):
    net = net.to(device)
    print("training on ", device)
    batch_count = 0
    for epoch in range(num_epochs):
        train_l_sum, train_acc_sum, n, start = 0.0, 0.0, 0, time.time()
        for X, y in train_iter:
            X = X.to(device)
            y = y.to(device)
            y_hat = net(X)
            l = loss(y_hat, y) 
            optimizer.zero_grad()
            l.backward()
            optimizer.step()
            train_l_sum += l.cpu().item()
            train_acc_sum += (y_hat.argmax(dim=1) == y).sum().cpu().item()
            n += y.shape[0]
            batch_count += 1
        test_acc = evaluate_accuracy(test_iter, net)
        print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f, time %.1f sec'
              % (epoch + 1, train_l_sum / batch_count, train_acc_sum / n, test_acc, time.time() - start))

由于嵌入层的参数是不需要在训练过程中被更新的,所以我们利用 filter 函数和 lambda 表达式来过滤掉模型中不需要更新参数的部分。

lr, num_epochs = 0.01, 5
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, net.parameters()), lr=lr)
loss = nn.CrossEntropyLoss()

train(train_iter, test_iter, net, loss, optimizer, device, num_epochs)
  • 评价模型
def predict_sentiment(net, vocab, sentence):
    '''
    @params:
        net: 训练好的模型
        vocab: 在该数据集上创建的词典,用于将给定的单词序转换为单词下标的序列,从而输入模型
        sentence: 需要分析情感的文本,以单词序列的形式给出
    @return: 预测的结果,positive 为正面情绪文本,negative 为负面情绪文本
    '''
    device = list(net.parameters())[0].device # 读取模型所在的环境
    sentence = torch.tensor([vocab.stoi[word] for word in sentence], device=device)
    label = torch.argmax(net(sentence.view((1, -1))), dim=1)
    return 'positive' if label.item() == 1 else 'negative'

predict_sentiment(net, vocab, ['this', 'movie', 'is', 'so', 'great'])

2.4 使用卷积神经网络进行情感分类

  • 一维卷积层
def corr1d(X, K):
    '''
    @params:
        X: 输入,形状为 (seq_len,) 的张量
        K: 卷积核,形状为 (w,) 的张量
    @return:
        Y: 输出,形状为 (seq_len - w + 1,) 的张量
    '''
    w = K.shape[0] # 卷积窗口宽度
    Y = torch.zeros((X.shape[0] - w + 1))
    for i in range(Y.shape[0]): # 滑动窗口
        Y[i] = (X[i: i + w] * K).sum()
    return Y

X, K = torch.tensor([0, 1, 2, 3, 4, 5, 6]), torch.tensor([1, 2])
print(corr1d(X, K))
def corr1d_multi_in(X, K):
    # 首先沿着X和K的通道维遍历并计算一维互相关结果。然后将所有结果堆叠起来沿第0维累加
    return torch.stack([corr1d(x, k) for x, k in zip(X, K)]).sum(dim=0)
    # [corr1d(X[i], K[i]) for i in range(X.shape[0])]

X = torch.tensor([[0, 1, 2, 3, 4, 5, 6],
              [1, 2, 3, 4, 5, 6, 7],
              [2, 3, 4, 5, 6, 7, 8]])
K = torch.tensor([[1, 2], [3, 4], [-1, -3]])
print(corr1d_multi_in(X, K))
  • 时序最大池化层
class GlobalMaxPool1d(nn.Module):
    def __init__(self):
        super(GlobalMaxPool1d, self).__init__()
    def forward(self, x):
        '''
        @params:
            x: 输入,形状为 (batch_size, n_channels, seq_len) 的张量
        @return: 时序最大池化后的结果,形状为 (batch_size, n_channels, 1) 的张量
        '''
        return F.max_pool1d(x, kernel_size=x.shape[2]) # kenerl_size=seq_len
  • TextCNN 模型:TextCNN 模型主要使用了一维卷积层和时序最大池化层。
class TextCNN(nn.Module):
    def __init__(self, vocab, embed_size, kernel_sizes, num_channels):
        '''
        @params:
            vocab: 在数据集上创建的词典,用于获取词典大小
            embed_size: 嵌入维度大小
            kernel_sizes: 卷积核大小列表
            num_channels: 卷积通道数列表
        '''
        super(TextCNN, self).__init__()
        self.embedding = nn.Embedding(len(vocab), embed_size) # 参与训练的嵌入层
        self.constant_embedding = nn.Embedding(len(vocab), embed_size) # 不参与训练的嵌入层
        
        self.pool = GlobalMaxPool1d() # 时序最大池化层没有权重,所以可以共用一个实例
        self.convs = nn.ModuleList()  # 创建多个一维卷积层
        for c, k in zip(num_channels, kernel_sizes):
            self.convs.append(nn.Conv1d(in_channels = 2*embed_size, 
                                        out_channels = c, 
                                        kernel_size = k))
            
        self.decoder = nn.Linear(sum(num_channels), 2)
        self.dropout = nn.Dropout(0.5) # 丢弃层用于防止过拟合

    def forward(self, inputs):
        '''
        @params:
            inputs: 词语下标序列,形状为 (batch_size, seq_len) 的整数张量
        @return:
            outputs: 对文本情感的预测,形状为 (batch_size, 2) 的张量
        '''
        embeddings = torch.cat((
            self.embedding(inputs), 
            self.constant_embedding(inputs)), dim=2) # (batch_size, seq_len, 2*embed_size)
        # 根据一维卷积层要求的输入格式,需要将张量进行转置
        embeddings = embeddings.permute(0, 2, 1) # (batch_size, 2*embed_size, seq_len)
        
        encoding = torch.cat([
            self.pool(F.relu(conv(embeddings))).squeeze(-1) for conv in self.convs], dim=1)
        # encoding = []
        # for conv in self.convs:
        #     out = conv(embeddings) # (batch_size, out_channels, seq_len-kernel_size+1)
        #     out = self.pool(F.relu(out)) # (batch_size, out_channels, 1)
        #     encoding.append(out.squeeze(-1)) # (batch_size, out_channels)
        # encoding = torch.cat(encoding) # (batch_size, out_channels_sum)
        
        # 应用丢弃法后使用全连接层得到输出
        outputs = self.decoder(self.dropout(encoding))
        return outputs

embed_size, kernel_sizes, nums_channels = 100, [3, 4, 5], [100, 100, 100]
net = TextCNN(vocab, embed_size, kernel_sizes, nums_channels)
  • 训练并评价模型
lr, num_epochs = 0.001, 5
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, net.parameters()), lr=lr)
loss = nn.CrossEntropyLoss()
train(train_iter, test_iter, net, loss, optimizer, device, num_epochs)
发布了48 篇原创文章 · 获赞 49 · 访问量 9157

猜你喜欢

转载自blog.csdn.net/qq_30006749/article/details/104494167