机器学习(九):K-mean 算法

算法介绍

聚类是一种无监督的学习,它将相似的对象归到同一个簇中。它有点像全自动分类。聚类方法几乎可以应用于所有对象,簇内的对象越相似,聚类的效果越好。本章要学习一种称为K-均值(K-mean)聚类的算法。之所以称之为K-均值是因为它可以发现k个不同的簇,且每个簇的中心采用簇中所含值的均值计算而成
在介绍K-均值算法之前,先讨论一下装识别(cluster identification)。簇识别给出聚类结果的含义。假定有一些数据,现在将相似数据归到一起,簇识别会告诉我们这些簇到底都是些什么。聚类与分类的最大不同在于,分类的目标事先巳知,而聚类则不一样。因为其产生的结果与分类相同,而只是类别没有预先定义,聚类有时也被称为无监督分类(unsupervised classification )

算法实现

K-均值算法的工作流程是这样的。首先,随机确定k个初始作为质心。然后将数据集中的每个点分配到一个簇中,具体来讲,为每个点找距其最近的质心,并将其分配给该质心所对应的簇。这一步完成之后,每个簇的质心更新为该簇所有点的平均值。
代码实现

def loadDataSet(fileName):      #general function to parse tab -delimited floats
    dataMat = []                #assume last column is target value
    fr = open(fileName)
    for line in fr.readlines():
        curLine = line.strip().split('\t')
        fltLine = map(float,curLine) #map all elements to float()
        dataMat.append(fltLine)
    return dataMat

def distEclud(vecA, vecB):
    return sqrt(sum(power(vecA - vecB, 2))) #la.norm(vecA-vecB)

def randCent(dataSet, k):
    n = shape(dataSet)[1]
    centroids = mat(zeros((k,n)))#create centroid mat
    for j in range(n):#create random cluster centers, within bounds of each dimension
        minJ = min(dataSet[:,j]) 
        rangeJ = float(max(dataSet[:,j]) - minJ)
        centroids[:,j] = mat(minJ + rangeJ * random.rand(k,1))
    return centroids
    
def kMeans(dataSet, k, distMeas=distEclud, createCent=randCent):
    m = shape(dataSet)[0]
    clusterAssment = mat(zeros((m,2)))#create mat to assign data points 
                                      #to a centroid, also holds SE of each point
    centroids = createCent(dataSet, k)
    clusterChanged = True
    while clusterChanged:
        clusterChanged = False
        for i in range(m):#for each data point assign it to the closest centroid
            minDist = inf; minIndex = -1
            for j in range(k):
                distJI = distMeas(centroids[j,:],dataSet[i,:])
                if distJI < minDist:
                    minDist = distJI; minIndex = j
            if clusterAssment[i,0] != minIndex: clusterChanged = True
            clusterAssment[i,:] = minIndex,minDist**2
        print centroids
        print "+===============test+==============="
        for cent in range(k):#recalculate centroids
            ptsInClust = dataSet[nonzero(clusterAssment[:,0].A==cent)[0]]#get all the point in this cluster
            centroids[cent,:] = mean(ptsInClust, axis=0) #assign centroid to mean 
    return centroids, clusterAssment

代码测试

if __name__ == '__main__':
    datMat = mat(loadDataSet('testSet.txt'))
    myCentroids, clustAssing = kMeans(datMat,4)
    print (myCentroids)
    print(clustAssing)

结果

[[ 2.80293085 -2.7315146 ]
 [ 2.6265299   3.10868015]
 [-3.38237045 -2.9473363 ]
 [-2.46154315  2.78737555]]

使用后处理来提高聚类性能
在K-均值聚类中簇的数目&是一个用户预先定义的参数,那么用户如何才能知道乂的选择是否正确?如何才能知道生成的簇比较好呢?在包含簇分配结果的矩阵中保存着每个点的误差,即该点到簇质心的距离平方值。下面会讨论利用该误差来评价聚类质量的方法
二分K-均值算法
为克服&-均值算法收敛于局部最小值的问题,有人提出了另一个称为二分K- 均值(bisectingK-means)的算法。该算法首先将所有点作为一个簇,然后将该簇一分为二。之后选择其中一个簇继续进行划分,选择哪一个簇进行划分取决于对"其划分是否可以最大程度降低SSE(Sum of Squared Error,误差平方和)的值。上述基于SSE的划分过程不断重复,直到得到用户指定的簇数目为止。

def biKmeans(dataSet, k, distMeas=distEclud):
    m = shape(dataSet)[0]
    clusterAssment = mat(zeros((m,2)))
    centroid0 = mean(dataSet, axis=0).tolist()[0]
    centList =[centroid0] #create a list with one centroid
    for j in range(m):#calc initial Error
        clusterAssment[j,1] = distMeas(mat(centroid0), dataSet[j,:])**2
    while (len(centList) < k):
        lowestSSE = inf
        for i in range(len(centList)):
            ptsInCurrCluster = dataSet[nonzero(clusterAssment[:,0].A==i)[0],:]#get the data points currently in cluster i
            centroidMat, splitClustAss = kMeans(ptsInCurrCluster, 2, distMeas)
            sseSplit = sum(splitClustAss[:,1])#compare the SSE to the currrent minimum
            sseNotSplit = sum(clusterAssment[nonzero(clusterAssment[:,0].A!=i)[0],1])
            print "sseSplit, and notSplit: ",sseSplit,sseNotSplit
            if (sseSplit + sseNotSplit) < lowestSSE:
                bestCentToSplit = i
                bestNewCents = centroidMat
                bestClustAss = splitClustAss.copy()
                lowestSSE = sseSplit + sseNotSplit
        bestClustAss[nonzero(bestClustAss[:,0].A == 1)[0],0] = len(centList) #change 1 to 3,4, or whatever
        bestClustAss[nonzero(bestClustAss[:,0].A == 0)[0],0] = bestCentToSplit
        print 'the bestCentToSplit is: ',bestCentToSplit
        print 'the len of bestClustAss is: ', len(bestClustAss)
        centList[bestCentToSplit] = bestNewCents[0,:].tolist()[0]#replace a centroid with two best centroids 
        centList.append(bestNewCents[1,:].tolist()[0])
        clusterAssment[nonzero(clusterAssment[:,0].A == bestCentToSplit)[0],:]= bestClustAss#reassign new clusters, and SSE
    return mat(centList), clusterAssment

测试代码

if __name__ == '__main__':
    datMat = mat(loadDataSet('testSet.txt'))
    centList, myNewAssments = biKmeans(datMat,3)

运行结果

sseSplit, and notSplit:  792.916856537 0.0
the bestCentToSplit is:  0
the len of bestClustAss is:  80
sseSplit, and notSplit:  66.36683512 466.632781336
sseSplit, and notSplit:  83.5874695564 326.284075201
the bestCentToSplit is:  1
the len of bestClustAss is:  40
[[ 0.08249337  2.94802785]
 [-3.38237045 -2.9473363 ]
 [ 2.80293085 -2.7315146 ]]

总结

聚类是一种无监督的学习方法。所谓无监督学习是指事先并不知道要寻找的内容,即没有目标变量。聚类将数据点归到多个簇中,其中相似数据点处于同一簇,而不相似数据点处于不同簇中。聚类中可以使用多种不同的方法来计算相似度。一种广泛使用的聚类算法是^ 均值算法,其中&是用户指定的要创建的簇的数目。K -均值聚类算法以K个随机质心开始。算法会计算每个点到质心的距离。每个点会被分配到距其最近的簇质心,然后紧接着基于新分配到簇的点更新簇质心。以上过程重复数次,直到簇质心不再改变。这个简单的算法非常有效但是也容易受到初始簇质心的影响。为了获得更好的聚类效果,可以使用另一种称为二分K- 均值的聚类算法。二分艮-均值算法首先将所有点作为一个簇,然后使用K-
均值算法(k = 2 ) 对其划分。下一次迭代时,选择有最大误差的簇进行划分。该过程重复直到k个簇创建成功为止。二分K-均值的聚类效果要好于K-均值算法。

发布了44 篇原创文章 · 获赞 0 · 访问量 1034

猜你喜欢

转载自blog.csdn.net/LTC_1234/article/details/103038714