liner-classifiers-logistic

liner classifiers

逻辑回归用在2分类问题上居多

1.logistic

  • 逻辑回归其实是一个分类算法而不是回归算法。通常是利用已知的自变量来预测一个离散型因变量的值(像二进制值0/1,是/否,真/假)。简单来说,它就是通过拟合一个逻辑函数(logit fuction)来预测一个事件发生的概率。所以它预测的是一个概率值,自然,它的输出值应该在0到1之间。--计算的是单个输出

1.2 sigmoid

逻辑函数
\(g(z)=\frac{1}{1+e^{-z}}\)

  • sigmoid函数是一个s形的曲线,它的取值在[0, 1]之间,在远离0的地方函数的值会很快接近0或者1。它的这个特性对于解决二分类问题十分重要
  • 二分类中,输出y的取值只能为0或者1,所以在线性回归的假设函数外包裹一层Sigmoid函数,使之取值范围属于(0,1),完成了从值到概率的转换。逻辑回归的假设函数形式如下
    \(h_{\theta}(x)=g\left(\theta^{T} x\right)=\frac{1}{1+e^{-\theta^{T} x}}=P(y=1 | x ; \theta)\)
    则若\(P(y=1 | x ; \theta)=0.7\),则表示输入为x的时候,y=1的概率为0.7

1.3 决策边界

决策边界,也称为决策面,是用于在N维空间,将不同类别样本分开的直线或曲线,平面或曲面

根据以上假设函数表示概率,我们可以推得
if \(h_{\theta}(x) \geqslant 0.5 \Rightarrow y=1\)
if \(h_{\theta}(x)<0.5 \Rightarrow y=0\)

1.3.1 线性决策边界

1.3.2 非线性决策边界

1.4 代价函数/损失函数

在线性回归中的代价函数为
\(J(\theta)=\frac{1}{2 m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2}\)

  • 因为它是一个凸函数,所以可用梯度下降直接求解,局部最小值即全局最小值
  • 只有把函数是或者转化为凸函数,才能使用梯度下降法进行求导哦
  • 在逻辑回归中,\(h_{\theta }(x)\)是一个复杂的非线性函数,属于非凸函数,直接使用梯度下降会陷入局部最小值中。类似于线性回归,逻辑回归的\(J(\theta )\)的具体求解过程如下
  • 对于输入x,分类结果为类别1和类别0的概率分别为:
    \(P(y=1 | x ; \theta)=h(x) ; \quad P(y=0 | x ; \theta)=1-h(x)\)
  • 因此化简为一个式子可以写为
    \(\left.P(y | x ; \theta)=(h(x))^{y}(1-h(x))^{(} 1-y\right)\)

1.4.1 似然函数

\(\begin{aligned} L(\theta) &=\prod_{i=1}^{m} P\left(y^{(i)} | x^{(i)} ; \theta\right) \\ &=\prod_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)\right)^{y^{(0)}}\left(1-h_{\theta}\left(x^{(i)}\right)\right)^{1-y^{(i)}} \end{aligned}\)
似然函数取对数之后
\(\begin{aligned} l(\theta) &=\log L(\theta) \\ &=\sum_{i=1}^{m}\left(y^{(i)} \log h_{\theta}\left(x^{(i)}\right)+\left(1-y^{(i)}\right) \log \left(1-h_{\theta}\left(x^{(i)}\right)\right)\right) \end{aligned}\)

  • 根据最大似然估计,需要使用梯度上升法求最大值,因此,为例能够使用梯度下降法,需要将代价函数构造成为凸函数
    因此
    \(J(\theta )=-\frac{1}{m} l(\theta )\)
    此时可以使用梯度下降求解了
  • \(\theta_{j}\)更新过程为
    \(\theta_{j}:=\theta_{j}-\alpha \frac{\partial}{\partial \theta_{j}} J(\theta)\)
    中间求导过程省略
    \(\theta_{j}:=\theta_{j}-\alpha \frac{1}{m} \sum_{i=1}^{m}\left(h_{\theta}\left(\mathrm{x}^{(i)}\right)-y^{(i)}\right) x_{j}^{(i)}, \quad(j=0 \ldots n)\)

1.5正则化

损失函数中增加惩罚项:参数值越大惩罚越大–>让算法去尽量减少参数值
损失函数 \(J(β)\)的简写形式:

\(J(\beta)=\frac{1}{m} \sum_{i=1}^{m} \cos (y, \beta)+\frac{\lambda}{2 m} \sum_{j=1}^{n} \beta_{j}^{2}\)

  • 当模型参数 β 过多时,损失函数会很大,算法要努力减少 β 参数值来让损失函数最小。
  • λ 正则项重要参数,λ 越大惩罚越厉害,模型越欠拟合,反之则倾向过拟合

1.5.1 lasso

l1正则化
\(J(\beta)=\frac{1}{m} \sum_{i=1}^{\mathrm{m}} \cos t(y, \beta)+\frac{\lambda}{2 m} \sum_{j=1}^{n}\left|\beta_{j}\right|\)

1.5.2 ridge

l2正则化
\(J(\beta)=\frac{1}{m} \sum_{i=1}^{\mathrm{m}} \cos t(y, \beta)+\frac{\lambda}{2 m} \sum_{j=1}^{n} \beta_{j}^{2}\)

 # Create LogisticRegression object and fit
    lr = LogisticRegression(C=C_value)
    lr.fit(X_train, y_train)
    
    # Evaluate error rates and append to lists
    train_errs.append( 1.0 - lr.score(X_train, y_train) )
    valid_errs.append( 1.0 - lr.score(X_valid, y_valid) )
    
# Plot results
plt.semilogx(C_values, train_errs, C_values, valid_errs)
plt.legend(("train", "validation"))
plt.show()

猜你喜欢

转载自www.cnblogs.com/gaowenxingxing/p/12321461.html