【目标检测】Faster RCNN算法详解

Ren, Shaoqing, et al. “Faster R-CNN: Towards real-time object detection with region proposal networks.” Advances in Neural Information Processing Systems. 2015.

本文是继RCNN[1],fast RCNN[2]之后,目标检测界的领军人物Ross Girshick团队在2015年的又一力作。简单网络目标检测速度达到17fps,在PASCAL VOC上准确率为59.9%;复杂网络达到5fps,准确率78.8%。

思想

从RCNN到fast RCNN,再到本文的faster RCNN,目标检测的四个基本步骤(候选区域生成,特征提取,分类,位置精修)终于被统一到一个深度网络框架之内。所有计算没有重复,完全在GPU中完成,大大提高了运行速度。
这里写图片描述

faster RCNN可以简单地看做“区域生成网络+fast RCNN“的系统,用区域生成网络代替fast RCNN中的Selective Search方法。本篇论文着重解决了这个系统中的三个问题:

  1. 如何设计区域生成网络
  2. 如何训练区域生成网络
  3. 如何让区域生成网络和fast RCNN网络共享特征提取网络

Region Proposal Network

RPN的核心思想是使用卷积神经网络直接产生region proposal,使用的方法本质上就是滑动窗口。RPN的设计比较巧妙,RPN只需在最后的卷积层上滑动一遍,因为anchor机制和边框回归可以得到多尺度多长宽比的region proposal。

这里写图片描述

我们直接看上边的RPN网络结构图(使用了ZF模型),给定输入图像(假设分辨率为600*1000),经过卷积操作得到最后一层的卷积特征图(大小约为40*60)。在这个特征图上使用3*3的卷积核(滑动窗口)与特征图进行卷积,最后一层卷积层共有256个feature map,那么这个3*3的区域卷积后可以获得一个256维的特征向量,后边接cls layer和reg layer分别用于分类和边框回归(跟Fast R-CNN类似,只不过这里的类别只有目标和背景两个类别)。3*3滑窗对应的每个特征区域同时预测输入图像3种尺度(128,256,512),3种长宽比(1:1,1:2,2:1)的region proposal,这种映射的机制称为anchor。所以对于这个40*60的feature map,总共有约20000(40*60*9)个anchor,也就是预测20000个region proposal。

​ 这样设计的好处是什么呢?虽然现在也是用的滑动窗口策略,但是:滑动窗口操作是在卷积层特征图上进行的,维度较原始图像降低了16*16倍(中间经过了4次2*2的pooling操作);多尺度采用了9种anchor,对应了三种尺度和三种长宽比,加上后边接了边框回归,所以即便是这9种anchor外的窗口也能得到一个跟目标比较接近的region proposal。

​ NIPS2015版本的Faster R-CNN使用的检测框架是RPN网络+Fast R-CNN网络分离进行的目标检测,整体流程跟Fast R-CNN一样,只是region proposal现在是用RPN网络提取的(代替原来的selective search)。同时作者为了让RPN的网络和Fast R-CNN网络实现卷积层的权值共享,训练RPN和Fast R-CNN的时候用了4阶段的训练方法:

​ (1) 使用在ImageNet上预训练的模型初始化网络参数,微调RPN网络;

​ (2) 使用(1)中RPN网络提取region proposal训练Fast R-CNN网络;

​ (3) 使用(2)的Fast R-CNN网络重新初始化RPN, 固定卷积层进行微调;

​ (4) 固定(2)中Fast R-CNN的卷积层,使用(3)中RPN提取的region proposal微调网络。

​ 权值共享后的RPN和Fast R-CNN用于目标检测精度会提高一些。

​ 使用训练好的RPN网络,给定测试图像,可以直接得到边缘回归后的region proposal,根据region proposal的类别得分对RPN网络进行排序,并选取前300个窗口作为Fast R-CNN的输入进行目标检测,使用VOC07+12训练集训练,VOC2007测试集测试mAP达到73.2%(selective search + Fast R-CNN是70%), 目标检测的速度可以达到每秒5帧(selective search+Fast R-CNN是2~3s一张)。

​ 需要注意的是,最新的版本已经将RPN网络和Fast R-CNN网络结合到了一起——将RPN获取到的proposal直接连到ROI pooling层,这才是一个真正意义上的使用一个CNN网络实现端到端目标检测的框架。

区域生成网络:结构

基本设想是:在提取好的特征图上,对所有可能的候选框进行判别。由于后续还有位置精修步骤,所以候选框实际比较稀疏。
这里写图片描述

特征提取

重点内容
原始特征提取(上图灰色方框)包含若干层conv+relu,直接套用ImageNet上常见的分类网络即可。本文试验了两种网络:5层的ZF[3],16层的VGG-16[4],具体结构不再赘述。
额外添加一个conv+relu层,输出51*39*256维特征(feature)。

候选区域(anchor)

特征可以看做一个尺度51*39的256通道图像,对于该图像的每一个位置,考虑9个可能的候选窗口:三种面积{1282,2562,5122}×{1282,2562,5122}×三种比例{1:1,1:2,2:1}{1:1,1:2,2:1}。这些候选窗口称为anchors。下图示出51*39个anchor中心,以及9种anchor示例。
这里写图片描述

在整个faster RCNN算法中,有三种尺度。
原图尺度:原始输入的大小。不受任何限制,不影响性能。
归一化尺度:输入特征提取网络的大小,在测试时设置,源码中opts.test_scale=600。anchor在这个尺度上设定。这个参数和anchor的相对大小决定了想要检测的目标范围。
网络输入尺度:输入特征检测网络的大小,在训练时设置,源码中为224*224。

窗口分类和位置精修

分类层(cls_score)输出每一个位置上,9个anchor属于前景和背景的概率;窗口回归层(bbox_pred)输出每一个位置上,9个anchor对应窗口应该平移缩放的参数。
对于每一个位置来说,分类层从256维特征中输出属于前景和背景的概率;窗口回归层从256维特征中输出4个平移缩放参数。

就局部来说,这两层是全连接网络;就全局来说,由于网络在所有位置(共51*39个)的参数相同,所以实际用尺寸为1×1的卷积网络实现。

实际代码中,将51*39*9个候选位置根据得分排序,选择最高的一部分,再经过Non-Maximum Suppression获得2000个候选结果。之后才送入分类器和回归器。
所以Faster-RCNN和RCNN, Fast-RCNN一样,属于2-stage的检测算法。

区域生成网络:训练

样本

考察训练集中的每张图像:
a. 对每个标定的真值候选区域,与其重叠比例最大的anchor记为前景样本
b. 对a)剩余的anchor,如果其与某个标定重叠比例大于0.7,记为前景样本;如果其与任意一个标定的重叠比例都小于0.3,记为背景样本
c. 对a),b)剩余的anchor,弃去不用。
d. 跨越图像边界的anchor弃去不用

代价函数

同时最小化两种代价:
a. 分类误差
b. 前景样本的窗口位置偏差
具体参看fast RCNN中的“分类与位置调整”段落

超参数

原始特征提取网络使用ImageNet的分类样本初始化,其余新增层随机初始化。
每个mini-batch包含从一张图像中提取的256个anchor,前景背景样本1:1.
前60K迭代,学习率0.001,后20K迭代,学习率0.0001。
momentum设置为0.9,weight decay设置为0.0005。[5]

共享特征

区域生成网络(RPN)和fast RCNN都需要一个原始特征提取网络(下图灰色方框)。这个网络使用ImageNet的分类库得到初始参数W0W0,但要如何精调参数,使其同时满足两方的需求呢?本文讲解了三种方法。
这里写图片描述

轮流训练

a. 从W0W0开始,训练RPN。用RPN提取训练集上的候选区域
b. 从W0W0开始,用候选区域训练Fast RCNN,参数记为W1W1
c. 从W1W1开始,训练RPN…
具体操作时,仅执行两次迭代,并在训练时冻结了部分层。论文中的实验使用此方法。
如Ross Girshick在ICCV 15年的讲座Training R-CNNs of various velocities中所述,采用此方法没有什么根本原因,主要是因为”实现问题,以及截稿日期“。

近似联合训练

直接在上图结构上训练。在backward计算梯度时,把提取的ROI区域当做固定值看待;在backward更新参数时,来自RPN和来自Fast RCNN的增量合并输入原始特征提取层。
此方法和前方法效果类似,但能将训练时间减少20%-25%。公布的python代码中包含此方法。

联合训练

直接在上图结构上训练。但在backward计算梯度时,要考虑ROI区域的变化的影响。推导超出本文范畴,请参看15年NIP论文[6]。

实验

除了开篇提到的基本性能外,还有一些值得注意的结论

  • 与Selective Search方法(黑)相比,当每张图生成的候选区域从2000减少到300时,本文RPN方法(红蓝)的召回率下降不大。说明RPN方法的目的性更明确
    这里写图片描述
  • 使用更大的Microsoft COCO库[7]训练,直接在PASCAL VOC上测试,准确率提升6%。说明faster RCNN迁移性良好,没有over fitting。
    这里写图片描述

猜你喜欢

转载自blog.csdn.net/forever__1234/article/details/80063755