Adam和学习率衰减(learning learning decay)

本文先介绍一般的梯度下降法是如何更新参数的,然后介绍 Adam 如何更新参数,以及 Adam 如何和学习率衰减结合。

梯度下降法更新参数

梯度下降法参数更新公式:
\[ \theta_{t+1} = \theta_{t} - \eta \cdot \nabla J(\theta_t) \]

其中,\(\eta\) 是学习率,\(\theta_t\) 是第 \(t\) 轮的参数,\(J(\theta_t)\) 是损失函数,\(\nabla J(\theta_t)\) 是梯度。

在最简单的梯度下降法中,学习率 \(\eta\) 是常数,是一个需要实现设定好的超参数,在每轮参数更新中都不变,在一轮更新中各个参数的学习率也都一样。

为了表示简便,令 \(g_t = \nabla J(\theta_t)\),所以梯度下降法可以表示为:
\[ \theta_{t+1} = \theta_{t} - \eta \cdot g_t \]

Adam 更新参数

Adam,全称 Adaptive Moment Estimation,是一种优化器,是梯度下降法的变种,用来更新神经网络的权重。

Adam 更新公式:
\[ \begin{aligned} m_{t} &=\beta_{1} m_{t-1}+\left(1-\beta_{1}\right) g_{t} \\ v_{t} &=\beta_{2} v_{t-1}+\left(1-\beta_{2}\right) g_{t}^{2} \\ \hat{m}_{t} &=\frac{m_{t}}{1-\beta_{1}^{t}} \\ \hat{v}_{t} &=\frac{v_{t}}{1-\beta_{2}^{t}} \\ \theta_{t+1}&=\theta_{t}-\frac{\eta}{\sqrt{\hat{v}_{t}}+\epsilon} \hat{m}_{t} \end{aligned} \]

在 Adam 原论文以及一些深度学习框架中,默认值为 \(\eta = 0.001\)\(\beta_1 = 0.9\)\(\beta_2 = 0.999\)\(\epsilon = 1e-8\)。其中,\(\beta_1\)\(\beta_2\) 都是接近 1 的数,\(\epsilon\) 是为了防止除以 0。\(g_{t}\) 表示梯度。

咋一看很复杂,接下一一分解:

  • 前两行:
    \[ \begin{aligned} m_{t} &=\beta_{1} m_{t-1}+\left(1-\beta_{1}\right) g_{t} \\ v_{t} &=\beta_{2} v_{t-1}+\left(1-\beta_{2}\right) g_{t}^{2} \end{aligned} \]

这是对梯度和梯度的平方进行滑动平均,即使得每次的更新都和历史值相关。

  • 中间两行:
    \[ \begin{aligned} \hat{m}_{t} &=\frac{m_{t}}{1-\beta_{1}^{t}} \\ \hat{v}_{t} &=\frac{v_{t}}{1-\beta_{2}^{t}} \end{aligned} \]
    这是对初期滑动平均偏差较大的一个修正,叫做 bias correction,当 \(t\) 越来越大时,\(1-\beta_{1}^{t}\)\(1-\beta_{2}^{t}\) 都趋近于 1,这时 bias correction 的任务也就完成了。

  • 最后一行:
    \[ \theta_{t+1}=\theta_{t}-\frac{\eta}{\sqrt{\hat{v}_{t}}+\epsilon} \hat{m}_{t} \]

这是参数更新公式。

学习率为 \(\frac{\eta}{\sqrt{\hat{v}_{t}}+\epsilon}\),每轮的学习率不再保持不变,在一轮中,每个参数的学习率也不一样了,这是因为 \(\eta\) 除以了每个参数 \(\frac{1}{1- \beta_2} = 1000\) 轮梯度均方和的平方根,即 \(\sqrt{\frac{1}{1000}\sum_{k = t-999}^{t}g_k^2}\)。而每个参数的梯度都是不同的,所以每个参数的学习率即使在同一轮也就不一样了。(可能会有疑问,\(t\) 前面没有 999 轮更新怎么办,那就有多少轮就算多少轮,这个时候还有 bias correction 在。)

而参数更新的方向也不只是当前轮的梯度 \(g_t\) 了,而是当前轮和过去共 \(\frac{1}{1- \beta_1} = 10\) 轮梯度的平均。

有关滑动平均的理解,可以参考我之前的博客:理解滑动平均(exponential moving average)

Adam + 学习率衰减

在 StackOverflow 上有一个问题 Should we do learning rate decay for adam optimizer - Stack Overflow,我也想过这个问题,对 Adam 这些自适应学习率的方法,还应不应该进行 learning rate decay?

我简单的做了个实验,在 cifar-10 数据集上训练 LeNet-5 模型,一个采用学习率衰减 tf.keras.callbacks.ReduceLROnPlateau(patience=5),另一个不用。optimizer 为 Adam 并使用默认的参数,\(\eta = 0.001\)。结果如下:


加入学习率衰减和不加两种情况在 test 集合上的 accuracy 分别为: 0.5617 和 0.5476。(实验结果取了两次的平均,实验结果的偶然性还是有的)

通过上面的小实验,我们可以知道,学习率衰减还是有用的。(当然,这里的小实验仅能代表一小部分情况,想要说明学习率衰减百分之百有效果,得有理论上的证明。)

当然,在设置超参数时就可以调低 \(\eta\) 的值,使得不用学习率衰减也可以达到不错的效果。

将学习率从默认的 0.001 改成 0.0001,epoch 增大到 120,实验结果如下所示:

加入学习率衰减和不加两种情况在 test 集合上的 accuracy 分别为: 0.5636 和 0.5688。(三次实验平均,实验结果仍具有偶然性)

这个时候,使用学习率衰减带来的影响可能很小。

那么问题来了,Adam 做不做学习率衰减呢?
我个人会选择做学习率衰减。(仅供参考吧。)在初始学习率设置较大的时候,做学习率衰减比不做要好;而当初始学习率设置就比较小的时候,做学习率衰减似乎有点多余,但从 val set 上的效果看,做了学习率衰减还是可以有丁点提升的。

ReduceLROnPlateau 在 val_loss 正常下降的时候,对学习率是没有影响的,只有在 patience(默认为 10)个 epoch 内,val_loss 都不下降 1e-4 或者直接上升了,这个时候降低学习率确实是可以很明显提升模型训练效果的,在 val_acc 曲线上看到一个快速上升的过程。对于其它类型的学习率衰减,这里没有过多地介绍。

Adam 衰减的学习率

从上述学习率曲线来看,Adam 做学习率衰减,是对 \(\eta\) 进行,而不是对 \(\frac{\eta}{\sqrt{\hat{v}_{t}}+\epsilon}\) 进行,但有区别吗?

学习率衰减一般如下:

  • exponential_decay:
    decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)

  • natural_exp_decay:
    decayed_learning_rate = learning_rate * exp(-decay_rate * global_step / decay_steps)

  • ReduceLROnPlateau
    如果被监控的值(如‘val_loss’)在 patience 个 epoch 内都没有下降,那么学习率衰减,乘以一个 factor
    decayed_learning_rate = learning_rate * factor

这些学习率衰减都是直接在原学习率上乘以一个 factor ,对 \(\eta\) 或对 \(\frac{\eta}{\sqrt{\hat{v}_{t}}+\epsilon}\) 操作,结果都是一样的。

References

An overview of gradient descent optimization algorithms -- Sebastian Ruder
Should we do learning rate decay for adam optimizer - Stack Overflow
Tensorflow中learning rate decay的奇技淫巧 -- Elevanth

猜你喜欢

转载自www.cnblogs.com/wuliytTaotao/p/11101652.html