数值分析(2)-多项式插值: 拉格朗日插值法

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/kevin_zhao_zl/article/details/90473647

整理一下数值分析的笔记~
目录:

1. 误差
2. 多项式插值与样条插值(THIS)
3. 函数逼近
4. 数值积分与数值微分
5. 线性方程组的直接解法
6. 线性方程组的迭代解法
7. 非线性方程求根
8. 特征值和特征向量的计算
9. 常微分方程初值问题的数值解

1. 拉格朗日基函数

定义. l k ( x ) l_k(x) 是n次多项式,在插值节点 x 0 , x 1 , . . . , x n x_0,x_1,...,x_n 上满足:

l k ( x j ) = { 1 , j = k 0 , j k l_k(x_j)=\begin{cases} 1,&j=k\\ 0,&j \neq k \end{cases}

则称 l k ( x ) l_k(x) 为节点 x 0 , x 1 , . . . , x n x_0,x_1,...,x_n 上的拉格朗日插值基函数。

n=1 \rarr 线性插值

问题定义:给定区间 [ x k , x k + 1 ] [x_k,x_{k+1}] 及端点函数值: y k = f ( x k ) , y k + 1 = f ( x k + 1 ) y_k=f(x_k),y_{k+1}=f(x_{k+1}) ,求线性插值多项式 L 1 ( x ) L_1(x) ,使其满足 L 1 ( x k ) = y k , L 1 ( x k + 1 ) = y k + 1 L_1(x_k)=y_k,L_1(x_{k+1})=y_{k+1}

不难看出几何上就是通过两点的直线,两点式有: L 1 ( x ) = x k + 1 x x k + 1 x k y k + x x k x k + 1 x k y k + 1 L_1(x)=\frac{x_{k+1}-x}{x_{k+1}-x_k}y_k+\frac{x-x_k}{x_{k+1}-x_k}y_{k+1}

L 1 ( x ) L_1(x) 是两个线性函数 l k ( x ) = x k + 1 x x k + 1 x k , l k + 1 ( x ) = x x k x k + 1 x k l_k(x)=\frac{x_{k+1}-x}{x_{k+1}-x_k},l_{k+1}(x)=\frac{x-x_k}{x_{k+1}-x_k}

的线性组合,系数分别是 y k y k + 1 y_k和y_{k+1} ,即:

L 1 ( x ) = y k l k ( x ) + y k + 1 l k + 1 ( x ) L_1(x)=y_kl_k(x)+y_{k+1}l_{k+1}(x)

显然:

l k ( x k ) = 1 , l k ( x k + 1 ) = 0 l k + 1 ( x k ) = 0 , l k + 1 ( x k + 1 ) = 1 l_k(x_k)=1,l_k(x_{k+1})=0\\ l_{k+1}(x_k)=0,l_{k+1}(x_{k+1})=1

l k ( x ) l k + 1 ( x ) l_k(x)和l_{k+1}(x) 线性插值基函数

n=2 \rarr 抛物插值

同理,假定插值节点为 x k 1 , x k , x k + 1 x_{k-1},x_k,x_{k+1} ,求二次插值多项式 L 2 ( x ) L_2(x) 使其满足 L 2 ( x j ) = y j , ( j = k 1 , k , k + 1 ) L_2(x_j)=y_j,(j=k-1,k,k+1) ,几何上其为通过三点 ( x k 1 , y k 1 ) , ( x k , y k ) , ( x k + 1 , y k + 1 ) (x_{k-1},y_{k-1}),(x_k,y_k),(x_{k+1},y_{k+1}) 的抛物线,用基函数的方法求 L 2 ( x ) L_2(x) 的表达式,此时基函数 l k 1 ( x ) , l k ( x ) , l k + 1 ( x ) l_{k-1}(x),l_k(x),l_{k+1}(x) 是二次函数,且在节点上满足条件:

l k 1 ( x k 1 ) = 1 , l k 1 ( x k ) = 0 , l k 1 ( x k + 1 ) = 0 l k ( x k 1 ) = 0 , l k ( x k ) = 1 , l k ( x k + 1 ) = 0 l k + 1 ( x k 1 ) = 0 , l k + 1 ( x k ) = 0 , l k + 1 ( x k + 1 ) = 1 l_{k-1}(x_{k-1})=1,l_{k-1}(x_{k})=0,l_{k-1}(x_{k+1})=0\\ l_k(x_{k-1})=0,l_k(x_k)=1,l_k(x_{k+1})=0\\ l_{k+1}(x_{k-1})=0,l_{k+1}(x_k)=0,l_{k+1}(x_{k+1})=1

l k l_{k} 为例,由上面的式子可以知道它有两个零点 x k 1 , x k + 1 x_{k-1},x_{k+1} ,有 l k ( x ) = A ( x x k 1 ) ( x x k + 1 ) l_k(x)=A(x-x_{k-1})(x-x_{k+1}) ,其中A为待定系数,根据 l k ( x k ) = 1 l_{k}(x_{k})=1 定出:

A = 1 ( x k x k 1 ) ( x k x k + 1 ) A=\frac{1}{(x_k-x_{k-1})(x_k-x_{k+1})}

于是有:

l k ( x ) = ( x x k 1 ) ( x x k + 1 ) ( x k x k 1 ) ( x k x k + 1 ) l_k(x)=\frac{(x-x_{k-1})(x-x_{k+1})}{(x_k-x_{k-1})(x_k-x_{k+1})}

同理:

l k 1 ( x ) = ( x x k ) ( x x k + 1 ) ( x k 1 x k ) ( x k 1 x k + 1 ) l k + 1 ( x ) = ( x x k 1 ) ( x x k ) ( x k + 1 x k 1 ) ( x k + 1 x k ) l_{k-1}(x)=\frac{(x-x_{k})(x-x_{k+1})}{(x_{k-1}-x_k)(x_{k-1}-x_{k+1})}\\ l_{k+1}(x)=\frac{(x-x_{k-1})(x-x_{k})}{(x_{k+1}-x_{k-1})(x_{k+1}-x_{k})}

可得二次插值多项式:

L 2 ( x ) = y k 1 l k 1 ( x ) + y k l k ( x ) + y k + 1 l k + 1 ( x ) L_2(x)=y_{k-1}l_{k-1}(x)+y_{k}l_{k}(x)+y_{k+1}l_{k+1}(x)

2. 拉格朗日插值多项式

推广至一般情形,构造通过n+1个节点的n次插值多项式 L n ( x ) L_n(x) .根据插值定义有: L n ( x j ) = y j , ( j = 0 , 1 , . . . , n ) L_n(x_j)=y_j,(j=0,1,...,n) 。为此先定义n次插值基函数:

定义1 若n次多项式 L j ( x ) ( j = 0 , 1 , 2 , . . . , n ) L_j(x)(j=0,1,2,...,n) 在n+1个节点 x 0 < x 1 < . . . < x n x_0<x_1<...<x_n 上满足条件:

l k ( x j ) = { 1 , j = k 0 , j k , ( j , k = 0 , 1 , . . . , n ) l_k(x_j)=\begin{cases} 1,&j=k\\ 0,&j \neq k \end{cases},(j,k=0,1,...,n)

就称这n+1个n次多项式 l 0 ( x ) l 1 ( x ) , . . . , l n ( x ) l_0(x),l_1(x),...,l_n(x) 为节点 x 0 , x 1 , . . . , x n x_0,x_1,...,x_n 上的n次插值基函数,类似地:

l k ( x ) = ( x x 0 ) . . . ( x x k 1 ) ( x x k + 1 ) . . . ( x x n ) ( x k x 0 ) . . . ( x k x k 1 ) ( x k x k + 1 ) . . . ( x k x n ) l_k(x)=\frac{(x-x_0)...(x-x_{k-1})(x-x_{k+1})...(x-x_n)}{(x_k-x_0)...(x_k-x_{k-1})(x_k-x_{k+1})...(x_k-x_n)}

由此可得插值多项式:

L n ( x ) = k = 0 n y k l k ( x ) L_n(x)=\sum^n_{k=0}y_kl_k(x)

称为拉格朗日插值多项式。为了方便表示,引入记号:

ω n + 1 = ( x x 0 ) ( x x 1 ) . . . ( x x n ) ω n + 1 ( x k ) = ( x k x 0 ) . . . ( x k x k 1 ) ( x k x k + 1 ) . . . ( x k x n ) \omega_{n+1}=(x-x_0)(x-x_1)...(x-x_n)\\ 且有\omega'_{n+1}(x_k)=(x_k-x_0)...(x_k-x_{k-1})(x_k-x_{k+1})...(x_k-x_n)

则拉格朗日插值多项式可以写为:

L n ( x ) = k = 0 n ω n + 1 ( x ) ( x x k ) ω n + 1 ( x k ) L_n(x)=\sum^n_{k=0}\frac{\omega_{n+1}(x)}{(x-x_k)\omega'_{n+1}(x_k)}

关于插值多项式存在惟一性有一个定理:

定理1 在次数不超过n的多项式集合 H n H_n 中,满足 L n ( x j ) = y j , ( j = 0 , 1 , . . . , n ) L_n(x_j)=y_j,(j=0,1,...,n) 的插值多项式 L n ( x ) H n L_n(x)\in H_n 存在且惟一。

惟一性证明:假定另有 P ( x ) H n 使 P ( x j ) = f ( x j ) , i = 0 , 1 , . . . , n P(x) \in H_n使得P(x_j)=f(x_j),i=0,1,...,n 成立,于是有 L n ( x i ) P ( x i ) = 0 i = 0 , 1 , 2... , n L_n(x_i)-P(x_i)=0对i=0,1,2...,n 成立,表明多项式 L n ( x i ) P ( x i ) H n L_n(x_i)-P(x_i) \in H_n 有n+1个零点,这与n次多项式只有n个零点的基本定理矛盾。

eg,已知f(144)=12,f(169)=13,f(225)=15,作f(x)二次Lagrange插值多项式并求f(175)1的近似值。

解: x 0 = 144 , x 1 = 169 , x 2 = 225 , y 0 = 12 , y 1 = 13 , y 2 = 15 x_0=144,x_1=169,x_2=225,y_0=12,y_1=13,y_2=15 ,则f(x)的二次Lagrange插值基函数为:

l 0 ( x ) = ( x x 1 ) ( x x 2 ) ( x 0 x 1 ) ( x 0 x 2 ) = ( x 169 ) ( x 225 ) ( 144 169 ) ( 144 225 ) l 1 ( x ) = ( x x 0 ) ( x x 2 ) ( x 1 x 0 ) ( x 1 x 2 ) = ( x 144 ) ( x 225 ) ( 169 144 ) ) ( 169 225 ) l 2 ( x ) = ( x x 0 ) ( x x 1 ) ( x 2 x 0 ) ( x 2 x 1 ) = ( x 144 ) ( x 169 ) ( 225 144 ) ( 225 169 ) l_0(x)=\frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)}=\frac{(x-169)(x-225)}{(144-169)(144-225)}\\ l_1(x)=\frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)}=\frac{(x-144)(x-225)}{(169-144))(169-225)}\\ l_2(x)=\frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)}=\frac{(x-144)(x-169)}{(225-144)(225-169)}

因此f(x)的二次Lagrange插值多项式为:

L 2 ( x ) = y 0 l 0 ( x ) + y 1 l 1 ( x ) + y 2 l 2 ( x ) L_2(x)=y_0l_0(x)+y_1l_1(x)+y_2l_2(x)

f ( 175 ) 12 l 0 175 + 13 l 1 ( 175 ) + 15 l 2 ( 175 ) = 13.23015873 f(175) \approx 12l_0{175}+13l_1(175)+15l_2(175)=13.23015873

3. 插值余项和误差估计

在[a,b]上用 L n ( x ) L_n(x) 近似f(x),则其截断误差 R n ( x ) = f ( x ) L n ( x ) R_n(x)=f(x)-L_n(x) ,也称为插值多项式的余项,若f(x)的n阶导数连续,n+1阶导数存在,则:

R n ( x ) = f ( x ) L n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ω n + 1 ( x ) , ξ ( a , b ) x R_n(x)=f(x)-L_n(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}\omega_{n+1}(x),其中\xi \in (a,b)且依赖于x

通常情况下 ξ \xi 在(a,b)上具体位置未知,若可以求出 m a x a < x < b f ( n + 1 ) ( x ) = M n + 1 max_{a<x<b}|f^{(n+1)}(x)|=M_{n+1} ,则 R n ( x ) M n + 1 ( n + 1 ) ! ω n + 1 ( x ) R_n(x) \leq \frac{M_{n+1}}{(n+1)!}|\omega_{n+1}(x)|

Lagrange插值多项式的缺点:

  • 插值基函数计算复杂

  • 当增加一个新点时需重新计算

  • 插值多项式从n次增加到n+1次需重新计算

  • 插值曲线在节点处有尖点,不光滑,节点处不可导

  • 高次插值的精度不一定高


{持续更新}
欢迎扫描二维码关注微信公众号 深度学习与数学   [每天获取免费的大数据、AI等相关的学习资源、经典和最新的深度学习相关的论文研读,算法和其他互联网技能的学习,概率论、线性代数等高等数学知识的回顾]
在这里插入图片描述

猜你喜欢

转载自blog.csdn.net/kevin_zhao_zl/article/details/90473647
今日推荐