信号公式汇总之傅里叶变换

傅里叶级数
f ( t ) = a n + n = 1 [ a n c o s ( n ω 1 t ) + b n s i n ( n ω 1 t ) ] f(t)=a_n+\sum_{n=1}^{\infty}{[a_ncos(n\omega_1t)+b_nsin(n\omega_1t)]}

其中: a 0 = 1 T 1 t 0 t 0 + T 1 f ( t ) d t a_0=\frac{1}{T_1}\int_{t_0}^{t_0+T_1}f(t)dt

       a n = 2 T 1 t 0 t 0 + T 1 f ( t ) c o s ( n ω 1 t ) d t a_n=\frac{2}{T_1}\int_{t_0}^{t_0+T_1}f(t)\cdot cos(n\omega_1t)dt

       b n = 2 T 1 t 0 t 0 + T 1 f ( t ) s i n ( n ω 1 t ) d t b_n=\frac{2}{T_1}\int_{t_0}^{t_0+T_1}f(t)\cdot sin(n\omega_1t)dt

合并同频项: f ( t ) = d 0 + n = 1 d n s i n ( n ω 1 t + θ n ) f(t)=d_0+\sum_{n=1}^{\infty}{d_nsin(n\omega_1t+\theta _n)}

其中: d 0 = a 0 , d n = a n 2 + b n 2 , θ n = a r c t a n a n b n d_0=a_0 , d_n=\sqrt{ a_n^2+b_n^2 },\theta _n=arctan\frac{a_n}{b_n}

指数形式: f ( t ) = n = F n e j n ω 1 t f(t)=\sum_{n=-\infty}^{\infty}{F_n\cdot e^{jn\omega_1t}}

其中: F n = 1 T 1 t 0 t 0 + T 1 f ( t ) e j n ω 1 t d t = F_n=\frac{1}{T_1}\int_{t_0}^{t_0+T_1} f(t)e^{-jn\omega_1t}dt=

1 2 ( a n j b n ) = 1 2 a n 2 + b n 2 e j φ n , φ n = a r c t a n ( b n a n ) \frac{1}{2}(a_n-jb_n)=\frac{1}{2}\sqrt{a_n^2+b_n^2}e^{j\varphi_n},\varphi_n=arctan(-\frac{b_n}{a_n})

帕塞瓦尔定理: P = n = F n 2 P=\sum_{n=-\infty}^{\infty}{|F_n|^2}

傅里叶变换
正变换: F ( ω ) = F [ f ( t ) ] = f ( t ) e j ω t d t F(\omega)=\mathscr{F}[f(t)]=\int_{-\infty}^{\infty}f(t)e^{-j\omega t}dt

逆变换: f ( t ) = F [ F ( ω ) ] = 1 2 π F ( ω ) e j ω t d ω f(t)=\mathscr{F}[F(\omega)]=\frac{1}{2\pi}\int_{-\infty}^{\infty}F(\omega)e^{j\omega t}d\omega


基本信号的傅里叶变换:

单边指数: e α t u ( t ) e^{-\alpha t}u(t)\leftarrow\rightarrow    1 α + j ω \frac{1}{\alpha+j\omega}

双边指数: e α t e^{-\alpha |t|}      \leftarrow\rightarrow    2 α α 2 + ω 2 \frac{2\alpha}{\alpha^2+\omega^2}

门信号: g τ ( t ) g_{\tau}(t)       \leftarrow\rightarrow    τ S a ( ω τ 2 ) \tau Sa(\frac{\omega \tau }{2})

符号函数: s g n ( t ) sgn(t)    \leftarrow\rightarrow     2 j ω \frac{2}{j\omega}

冲激函数: δ ( t ) \delta (t)       \leftarrow\rightarrow     1 1

常数1:     1 1         \leftarrow\rightarrow     2 π δ ( ω ) 2\pi\delta(\omega)

冲激偶:   δ ( t ) \delta{\prime}(t)       \leftarrow\rightarrow     j ω {j\omega}

阶跃函数: ε ( t ) \varepsilon(t)       \leftarrow\rightarrow     π δ ( ω ) + 1 j ω {\pi\delta(\omega)+\frac{1}{j\omega}}

性质:

线性:   a 1 f 1 ( t ) + a 2 f 2 ( t ) a_1f_1(t)+a_2f_2(t)       \leftarrow\rightarrow     a 1 F 1 ( ω ) + a 2 F 2 ( ω ) a_1F_1(\omega)+a_2F_2(\omega)

对称性:   F ( t ) F(t)       \leftarrow\rightarrow     2 π f ( ω ) 2\pi f(-\omega)

尺度变换:   f ( a t ) f(at)       \leftarrow\rightarrow     1 a F ( j ω a ) \frac{1}{|a|}F(j\frac{\omega}{a})

虚实特性:   F ( ω ) = R ( ω ) + j X ( ω ) , R ( ω ) , X ( ω ) F(\omega)=R(\omega)+jX(\omega),R(\omega)偶,X(\omega)奇      
             f ( t ) F ( ω ) f ( t ) F ( ω ) f(t)实偶,F(\omega)实偶;f(t)实奇,F(\omega)虚奇

位移:时移: f ( t t 0 ) f(t-t_0) \leftarrow\rightarrow F ( j ω ) e j ω t 0 = > F(j\omega)e^{-j\omega t_0}=> δ ( t t 0 ) \delta(t-t_0) \leftarrow\rightarrow e j ω t 0 e^{-j\omega t_0}
      频移: f ( t ) e j ω 0 t f(t)e^{j\omega_0 t} \leftarrow\rightarrow F [ j ( ω ω 0 ) ] = > F[j(\omega-\omega _0)] => e j ω 0 t e^{j\omega_0 t} \leftarrow\rightarrow 2 π δ ( ω ω 0 ) 2\pi\delta(\omega-\omega _0)

==> { c o s ω 0 t = 1 2 ( e j ω t + e j ω t ) s i n ω 0 t = 1 2 j ( e j ω t e j ω t ) = > { f ( t ) c o s ( ω 0 t ) 1 2 [ F ( ω ω 0 ) + F ( ω + ω 0 ) ] f ( t ) s i n ( ω 0 t ) 1 2 j [ F ( ω ω 0 ) + F ( ω + ω 0 ) ] \begin{cases} {}cos\omega_0 t =\frac{1}{2}(e^{j\omega t}+e^{-j\omega t})\\{sin\omega_0 t =\frac{1}{2j}(e^{j\omega t}-e^{j\omega t})} \end{cases}=>\begin{cases} {f(t)cos(\omega_0 t)\leftarrow\rightarrow\frac{1}{2}[F(\omega-\omega_0)+F(\omega+\omega_0)]}\\ {f(t)sin(\omega_0 t) \leftarrow\rightarrow \frac{1}{2j}[F(\omega-\omega_0)+F(\omega+\omega_0)]} \end{cases}

==> { c o s ω 0 t π [ δ ( ω ω 0 ) + δ ( ω + ω 0 ) ) ] s i n ω 0 t π j [ δ ( ω ω 0 ) δ ( ω + ω 0 ) ) ] \begin{cases} {cos\omega_0t \leftarrow\rightarrow \pi [\delta(\omega-\omega_0)+\delta(\omega+\omega_0))] }\\ {sin\omega_0t \leftarrow\rightarrow \frac{\pi}{j} [\delta(\omega-\omega_0)-\delta(\omega+\omega_0))]}\end{cases}

f ( t ) c o s ω 0 t s i n ω 0 t f ( t ) 沿 ω 0 调制定理:若信号f(t)乘以cos\omega_0t或sin\omega_0t,等效于f(t)的频谱一分为二,沿数轴向左或向右各平移\omega_0

卷积:时域卷积: f 1 ( t ) f 2 ( t ) F 1 ( ω ) F 2 ( ω ) f_1(t)*f_2(t) \leftarrow\rightarrow F_1(\omega)\cdot F_2(\omega)

      频域卷积: f 1 ( t ) f 2 ( t ) 1 2 π F 1 ( ω ) F 2 ( ω ) f_1(t)\cdot f_2(t) \leftarrow\rightarrow \frac{1}{2\pi}F_1(\omega)*F_2(\omega)

微积分:时域: { : d f ( t ) d t j ω F ( ω ) : t f ( τ ) d τ 1 j ω F ( ω ) + π F ( 0 ) δ ( ω ) \begin{cases} {微分:\frac{df(t)}{dt} \leftarrow\rightarrow j\omega F(\omega )}\\{积分:\int_{-\infty}^{t} f(\tau)d\tau \leftarrow\rightarrow \frac{1}{j\omega} F(\omega)+\pi F(0)\delta(\omega)} \end{cases}

        频域: { : j t f ( t ) d F ( ω ) d ω : f ( t ) j t ω F ( u ) d u \begin{cases} {微分:-jtf(t) \leftarrow\rightarrow \frac{dF(\omega)}{d\omega}}\\ {积分:\frac{f(t)}{jt} \leftarrow\rightarrow \int_{-\infty}^{\omega}F(u)du} \end{cases}



欧拉公式:
e j θ = c o s θ + j s i n θ e^{j\theta}=cos\theta+jsin\theta

==> { e j ω 1 t = c o s ω 1 t + j s i n ω 1 t e j ω 1 t = c o s ω 1 t j s i n ω 1 t = > { c o s ( n ω 1 t ) = 1 2 ( e j n ω 1 t + e j n ω 1 t ) s i n ( n ω 1 t ) = 1 2 j ( e j n ω 1 t e j n ω 1 t ) \begin{cases} {e^{j\omega_1t}=cos\omega_1 t+jsin\omega_1 t}\\{e^{-j\omega_1t}=cos\omega_1 t-jsin\omega_1 t} \end{cases}=>\begin{cases} {cos(n\omega_1 t)=\frac{1}{2}(e^{jn\omega_1t}+e^{-jn\omega_1t})}\\ {sin(n\omega_1 t)=\frac{1}{2j}(e^{jn\omega_1t}-e^{-jn\omega_1t})} \end{cases}

阶跃信号和冲激信号:

冲激函数:
   加权特性: f ( t ) δ ( t ) = f ( 0 ) δ ( t ) , f ( t ) δ ( t t 0 ) = f ( t 0 ) δ ( t t 0 ) f(t)\delta(t)=f(0)\delta(t),f(t)\delta(t-t_0)=f(t_0)\delta(t-t_0)
   抽样特性: f ( t ) δ ( t ) d t = f ( 0 ) δ ( t ) d t = f ( 0 ) \int_{-\infty}^{\infty}f(t)\delta(t)dt=\int_{-\infty}^{\infty}f(0)\delta(t)dt=f(0)
           f ( t ) δ ( t t 0 ) d t = f ( t 0 ) \int_{-\infty}^{\infty}f(t)\delta{\prime}(t-t_0)dt=f(t_0)
   尺度变换: δ ( a t ) = 1 a δ ( t ) , δ ( a t t 0 ) = 1 a δ ( t t 0 a ) \delta(at)=\frac{1}{|a|}\delta(t),\delta(at-t_0)=\frac{1}{|a|}\delta(t-\frac{t_0}{a})

冲激偶:
   抽样特性: f ( t ) δ ( t ) d t = f ( t ) δ ( t ) δ d f ( t ) = \int_{-\infty}^{\infty}f(t)\delta{\prime}(t)dt=\left. f(t)\delta(t) \right| _{-\infty}^{\infty}-\int_{-\infty}^{\infty}\delta df(t)=              δ ( t ) f ( 0 ) d t = f ( 0 ) -\int_{-\infty}^{\infty}\delta(t)f{\prime}(0)dt=-f{\prime}(0)
   加权特性: f ( t ) δ ( t ) = f ( 0 ) δ ( t ) f ( t ) δ ( t ) f(t)\delta{\prime}(t)=f(0)\delta{\prime}(t)-f{\prime}(t)\delta(t)
              f ( t ) δ ( t t 0 ) = f ( t 0 ) δ ( t t 0 ) f ( t 0 ) δ ( t t 0 ) f(t)\delta{\prime}(t-t_0)=f(t_0)\delta{\prime}(t-t_0)-f{\prime}(t_0)\delta(t-t_0)

卷积运算: f ( t ) = f 1 ( t ) f 2 ( t ) = f 1 ( τ ) f 2 ( t τ ) d τ f(t)=f_1(t)*f_2(t)=\int_{-\infty}^{\infty}f_1(\tau)f_2(t-\tau)d\tau

性质:微分: f ( t ) = f 1 ( t ) f 2 ( t ) = f 1 ( t ) f 2 ( t ) f(t)=f_1{\prime}(t)*f_2(t)=f_1(t)*f_2{\prime}(t)
      积分: f 1 ( t ) = f 1 1 ( t ) f 2 ( t ) = f 1 ( t ) f 2 1 ( t ) f^{-1}(t)=f_1^{-1}(t)*f_2(t)=f_1(t)*f_2^{-1}(t)
      微积分: f ( t ) = f 1 1 ( t ) f 2 ( t ) = f 1 ( t ) f 2 ( t ) f(t)=f_1^{-1}(t)*f_2{\prime}(t)=f_1(t)*f_2(t)
      =======> f ( i ) ( t ) = f 1 ( j ) ( t ) f 2 ( i j ) ( t ) f^{(i)}(t)=f_1^{(j)}(t)*f_2^{(i-j)}(t)
      交换律: f 1 ( t ) f 2 ( t ) = f 2 ( t ) f 1 ( t ) f_1(t)*f_2(t)=f_2(t)*f_1(t)
      分配律: f 1 ( t ) [ f 2 ( t ) + f 3 ( t ) ] = f 1 ( t ) f 2 ( t ) + f 1 ( t ) f 3 ( t ) f_1(t)\ast [f_2(t)+f_3(t)]=f_1(t)\ast f_2(t)+f_1(t)\ast f_3(t)
        = = > ==> h ( t ) = h 1 ( t ) + h 2 ( t ) 并联系统h(t)=h_1(t)+h_2(t)
      结合律: [ f 1 ( t ) f 2 ( t ) ] f 3 ( t ) = f 1 ( t ) [ f 2 ( t ) f 3 ( t ) ] [f_1(t)\ast f_2(t)]\ast f_3(t)=f_1(t)\ast [f_2(t)\ast f_3(t)]
        = = > ==> h ( t ) = h 1 ( t ) h 2 ( t ) 串联系统h(t)=h_1(t)*h_2(t)

与冲激函数、冲激偶、阶跃函数
      冲激函数 δ ( t ) \delta(t) f ( t ) δ ( t ) = f ( t ) f(t)*\delta(t)=f(t)
                       f ( t ) δ ( t t 0 ) = f ( t t 0 ) f(t)*\delta(t-t_0)=f(t-t_0)
                            f ( t t 1 ) δ ( t t 2 ) = f ( t t 2 ) δ ( t t 1 ) = f ( t t 1 t 2 ) f(t-t_1)\ast \delta(t-t_2)=f(t-t_2)\ast \delta(t-t_1) =f(t-t_1-t_2)
      冲激偶 δ ( t ) \delta{\prime}(t) f ( t ) δ ( t ) = f ( t ) δ ( t ) = f ( t ) f(t)*\delta{\prime}(t)=f{\prime}(t)*\delta(t)=f{\prime}(t)
                   f ( t ) δ ( t ) = f ( t ) δ ( t ) = f ( t ) f(t)*\delta{\prime\prime}(t)=f{\prime\prime}(t)*\delta(t)=f{\prime\prime}(t)
      阶跃函数 ε ( t ) \varepsilon(t) f ( t ) ε ( t ) = f ( t ) δ 1 ( t ) = f 1 ( t ) = t f ( τ ) d τ f(t)*\varepsilon(t)=f(t)*\delta^{-1}(t)=f^{-1}(t)=\int_{-\infty}^{t}f(\tau)d\tau
                   f ( t ) ε ( t t 0 ) = t f ( τ τ 0 ) d τ = t t 0 f ( τ ) d τ f(t)*\varepsilon(t-t_0)=\int_{-\infty}^{t}f(\tau-\tau_0)d\tau=\int_{-\infty}^{t-t_0}f(\tau)d\tau
(与阶跃函数卷积就是变上限积分,阶跃函数是个理想的积分器)

时移特性: f 1 ( t t 1 ) f 2 ( t t 2 ) = f ( t t 1 t 2 ) f_1(t-t_1)*f_2(t-t_2)=f(t-t_1-t_2)

猜你喜欢

转载自blog.csdn.net/qq_41262681/article/details/88813854