C++的数据结构与算法学习(二)简单排序算法

1. 选择排序(Selection Sort)

选择排序(Selection-sort)是一种简单直观的排序算法。它的工作原理:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。 

1.1 算法描述

n个记录的直接选择排序可经过n-1趟直接选择排序得到有序结果。具体算法描述如下:

  • 初始状态:无序区为R[1..n],有序区为空;
  • 第i趟排序(i=1,2,3…n-1)开始时,当前有序区和无序区分别为R[1..i-1]和R(i..n)。该趟排序从当前无序区中-选出关键字最小的记录 R[k],将它与无序区的第1个记录R交换,使R[1..i]和R[i+1..n)分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区;
  • n-1趟结束,数组有序化了。

1.2 动图演示

  

1.3 代码实现

//选择排序,复杂度O(N^2)
template<typename T>
void selectionSort(T arr[], int n){

    for(int i = 0 ; i < n ; i ++){

        int minIndex = i;//当前寻找的最小值的索引
        for( int j = i + 1 ; j < n ; j ++ )
            if( arr[j] < arr[minIndex] )
                minIndex = j;

        swap( arr[i] , arr[minIndex] );//交换函数,在c++11中的std中,老版本中的<iostream>
    }
}

1.4 算法分析

表现最稳定的排序算法之一,因为无论什么数据进去都是O(n2)的时间复杂度,所以用到它的时候,数据规模越小越好。唯一的好处可能就是不占用额外的内存空间了吧。理论上讲,选择排序可能也是平时排序一般人想到的最多的排序方法了吧。

2、插入排序(Insertion Sort)

插入排序(Insertion-Sort)的算法描述是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。

2.1 算法描述

一般来说,插入排序都采用in-place在数组上实现。具体算法描述如下:

  • 从第一个元素开始,该元素可以认为已经被排序;
  • 取出下一个元素,在已经排序的元素序列中从后向前扫描;
  • 如果该元素(已排序)大于新元素,将该元素移到下一位置;
  • 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置;
  • 将新元素插入到该位置后;
  • 重复步骤2~5。

2.2 动图演示

2.3 代码实现

//插入排序
template<typename T>
void insertionSort(T arr[], int n){

    for( int i = 1 ; i < n ; i ++ ) {

        // 寻找元素arr[i]合适的插入位置
        // 写法1
//        for( int j = i ; j > 0 ; j-- )
//            if( arr[j] < arr[j-1] )
//                swap( arr[j] , arr[j-1] );
//            else
//                break;

        // 写法2
        // for( int j = i ; j > 0 && arr[j] < arr[j-1] ; j -- )
        // swap( arr[j] , arr[j-1] );//1次交换等于3次赋值

        //对2进行改进 ,写法3
        T e= arr[i];
        int j;//j保存元素e应该插入的位置  
        for( j = i ; j > 0 && arr[j-1] > e ; j -- ){
            arr[j]=arr[j-1];
        }   
        arr[j]= e;


    }

    return;
}

2.4 算法分析

插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。

3、冒泡排序(Bubble Sort)

冒泡排序是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。 

3.1 算法描述

  • 比较相邻的元素。如果第一个比第二个大,就交换它们两个;
  • 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;
  • 针对所有的元素重复以上的步骤,除了最后一个;
  • 重复步骤1~3,直到排序完成。

3.2 动图演示

3.3 代码实现

 

// 我们的第一版bubbleSort
template<typename T>
void bubbleSort( T arr[] , int n){

    bool swapped;

    do{
        swapped = false;
        for( int i = 1 ; i < n ; i ++ )
            if( arr[i-1] > arr[i] ){
                swap( arr[i-1] , arr[i] );
                swapped = true;

            }

        // 优化, 每一趟Bubble Sort都将最大的元素放在了最后的位置
        // 所以下一次排序, 最后的元素可以不再考虑
        n --;

    }while(swapped);
}


// 我们的第二版bubbleSort,使用newn进行优化
template<typename T>
void bubbleSort2( T arr[] , int n){

    int newn; // 使用newn进行优化

    do{
        newn = 0;
        for( int i = 1 ; i < n ; i ++ )
            if( arr[i-1] > arr[i] ){
                swap( arr[i-1] , arr[i] );

                // 记录最后一次的交换位置,在此之后的元素在下一轮扫描中均不考虑
                newn = i;
            }
        n = newn;
    }while(newn > 0);
}

4、希尔排序(Shell Sort)

1959年Shell发明,第一个突破O(n2)的排序算法,是简单插入排序的改进版。它与插入排序的不同之处在于,它会优先比较距离较远的元素。希尔排序又叫缩小增量排序。

4.1 算法描述

先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,具体算法描述:

  • 选择一个增量序列t1,t2,…,tk,其中ti>tj,tk=1;
  • 按增量序列个数k,对序列进行k 趟排序;
  • 每趟排序,根据对应的增量ti,将待排序列分割成若干长度为m 的子序列,分别对各子表进行直接插入排序。仅增量因子为1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。

4.2 动图演示

4.3 代码实现

void shellSort(T arr[], int n){

    // 计算 increment sequence: 1, 4, 13, 40, 121, 364, 1093...
    int h = 1;
    while( h < n/3 )
        h = 3 * h + 1;

    while( h >= 1 ){

        // h-sort the array
        for( int i = h ; i < n ; i ++ ){

            // 对 arr[i], arr[i-h], arr[i-2*h], arr[i-3*h]... 使用插入排序
            T e = arr[i];
            int j;
            for( j = i ; j >= h && e < arr[j-h] ; j -= h )
                arr[j] = arr[j-h];
            arr[j] = e;
        }

        h /= 3;
    }
}

// 比较SelectionSort, InsertionSort和BubbleSort和ShellSort四种排序算法的性能效率
// ShellSort是这四种排序算法中性能最优的排序算法

4.4 算法分析

希尔排序的核心在于间隔序列的设定。既可以提前设定好间隔序列,也可以动态的定义间隔序列。动态定义间隔序列的算法是《算法(第4版)》的合著者Robert Sedgewick提出的。 

猜你喜欢

转载自blog.csdn.net/orange_littlegirl/article/details/88829911
今日推荐