Feb 26 Adaptive Block Compressive Sensing for Noisy Images

本篇文章是来自于一本书的某一章

讲述图像去噪,获得原图X的时候,引进一种新的方法,是可以在前期处理的过程中,引入Lipschitz去做逼近的,同时利用Taylor展式,可以把原有的目标函数变换成convex function并且带有一个penalty 项的样子 分成了两部分处理,一部分可以继续用梯度下降的方法,另一部分就单独留着再继续处理。

除此之外,在image 处理过程中,也和以前的方法不同,以前通常都是一个大的image,并且大多是square形状的,在本文的paper中,允许多样性的存在,

Compressive Sensing Methodology

For a noisy image, Compressive Sensing can be expressed as :
y = Φ Ψ s + ω y = \Phi\Psi s+ \omega                     ~~~~~~~~~~~~~~~~~~~ (1)
ω \omega is a N-dimension noise signal
Ψ \Psi is a N × \times N orthogonal basis matrix
Φ \Phi is an M × \times N random measurement matrix (M < N)
signal s in (1) can be estimated from measurement y by solving the convex minimization problem as follows.

argmin x Φ x y 2 2 + λ x 1 _x||\Phi x -y ||_2^2+\lambda||x||_1         ~~~~~~~ (2)
(2) is a constrained minimization problem of a convex function.
We can solve this problem by gradient-based method, which generate a new sequence x k x_k via:

x 0 R N , x k = x k 1 t k g ( x k 1 ) x_0\in \mathbb{R}^N,x_k=x_{k-1}-t_k\nabla g(x_{k-1})
where g(x) is a convex function, and t k t_k is step size.

For (2),Let us look at the objective function, it can be rewritten as F(x) = g(x) + f(x)
g(x) is a convex function, and f(x) = λ x 1 \lambda||x||_1

Then the Function g(x) can be approximated by a quadratic function

g ( x , x k ) = g ( x k 1 ) + &lt; ( x x k 1 ) , g ( x k 1 ) &gt; + 1 2 t k x x k 1 2 2 g(x,x_k)=g(x_{k-1})+&lt;(x-x_{k-1}),\nabla g(x_{k-1})&gt;+\frac{1}{2t_k}||x-x_{k-1}||_2^2
this function t k t_k can be replaced by a constant 1/L which is related to the Lipschitz constant.

Combined with other papers I have read. Applying the same idea to the non-smooth l 1 l_1 norm regularized problem:

minF(x) = min {g(x) + λ x 1 \lambda||x||_1 }

which can lead to the following iterative scheme:
x k = a r g m i n x g ( x k 1 ) + &lt; ( x x k 1 ) , g ( x k 1 ) &gt; + 1 2 t k x x k 1 2 2 + λ x 1 x_k = argmin_x{g(x_{k-1})+&lt;(x-x_{k-1}),\nabla g(x_{k-1})&gt;+\frac{1}{2t_k}||x-x_{k-1}||_2^2+\lambda||x||_1}

After the constant term is ignored, we get:

x k = a r g m i n x ( 1 2 t k x ( x k 1 t k g ( x k 1 ) 2 2 + λ x 1 ) x_k =argmin_x\left( \large \frac{1}{2t_k}||x-(x_{k-1}-t_k\nabla g(x_{k-1})||_2^2+\lambda||x||_1\large \right)

According to the Lipschitz gradient:
g ( x ) g ( y ) L x y ||\nabla g(x) -\nabla g(y)||\leq L||x-y|| for all x & y,

we know that when x is close to y, g ( x ) g ( y ) x y \frac{||\nabla g(x) -\nabla g(y)||}{||x-y||} is the approximation of g ( x ) g\prime\prime(x) at point x.

So our model and function can be approximated by:
F ( x ) = g ( x k 1 ) + &lt; ( x x k 1 ) , g ( x k 1 ) &gt; + L 2 x x k 1 2 2 + f ( x ) F(x)=g(x_{k-1})+&lt;(x-x_{k-1}),\nabla g(x_{k-1})&gt;+\frac{L}{2}||x-x_{k-1}||_2^2 + f(x)

x k = a r g m i n x ( L 2 x ( x k 1 1 L g ( x k 1 ) 2 2 + λ x 1 ) x_k =argmin_x\left( \large \frac{L}{2}||x-(x_{k-1}-\frac{1}{L}\nabla g(x_{k-1})||_2^2+\lambda||x||_1\large \right)

Or equivalently:
x k = a r g m i n x ( L 2 x d k 2 2 + λ x 1 ) x_k =argmin_x\left( \large \frac{L}{2}||x-d_k||_2^2+\lambda||x||_1\large \right)
We recall the equation before, we know that:
y = Φ Ψ s + ω y = \Phi\Psi s+ \omega

g(x)= Φ x y 2 2 = Φ Ψ s y 2 2 ||\Phi x -y ||_2 ^2=||\Phi \Psi s -y ||_2 ^2

d k = x k 1 1 L g ( x k 1 ) d_k = x_{k-1}-\frac{1}{L}\nabla g(x_{k-1})

d k = x k 1 1 L ( Φ Ψ T ) T ( Φ Ψ T x k 1 y ) d_k=x_{k-1}-\frac{1}{L}(\Phi\Psi^T)^T(\Phi\Psi^Tx_{k-1}-y)

1 L \frac{1}{L} is the step size

The adaptive Block CS with sparsity

l 0 l_0 = #{j, c j c_j =0}
l ε 0 l_\varepsilon^0 = #{j, c j ε c_j\leq\varepsilon }

THE END of notes.

猜你喜欢

转载自blog.csdn.net/weixin_39434589/article/details/87943601