系统分析师上午题-第 1 章 计算机组成与体系结构

版权声明:本文为博主思考总结而得,只做抛砖引玉,欢迎大家转载指导 https://blog.csdn.net/hayre/article/details/83451615

1.1 试题1(2018年上半年试题14)

在这里插入图片描述

答案:C 采用的是SIMD架构
解析:
一、CPU与GPU的区别是什么?
中央处理器CPU,Central Processing Unit是一块超大规模的集成电路,是一台计算机的运算核心(Core)和控制核心( Control Unit)。它的功能主要是解释计算机指令以及处理计算机软件中的数据。中央处理器主要包括运算器(算术逻辑运算单元,ALU,Arithmetic Logic Unit)和高速缓冲存储器(Cache)及实现它们之间联系的数据(Data)、控制及状态的总线(Bus)。它与内部存储器(Memory)和输入/输出(I/O)设备合称为电子计算机三大核心部件。

图形处理器GPU,Graphics Processing Unit,又称显示核心、视觉处理器、显示芯片,是一种专门在个人电脑、工作站、游戏机和一些移动设备(如平板电脑、智能手机等)上图像运算工作的微处理器。用途是将计算机系统所需要的显示信息进行转换驱动,并向显示器提供行扫描信号,控制显示器的正确显示,是连接显示器和个人电脑主板的重要元件,也是“人机对话”的重要设备之一。显卡作为电脑主机里的一个重要组成部分,承担输出显示图形的任务,对于从事专业图形设计的人来说显卡非常重要。

CPU和GPU之所以大不相同,是由于其设计目标的不同,它们分别针对了两种不同的应用场景。主要区别如下。
CPU需要很强的通用性来处理各种不同的数据类型,同时又要逻辑判断又会引入大量的分支跳转和中断的处理。这些都使得CPU的内部结构异常复杂。
而GPU面对的则是类型高度统一的、相互无依赖的大规模数据和不需要被打断的纯净的计算环境。
于是CPU和GPU就呈现出非常不同的架构。
在这里插入图片描述
其中上图中绿色的是计算单元,橙红色的是存储单元,橙黄色的是控制单元。

GPU采用了数量众多的计算单元和超长的流水线,但只有非常简单的控制逻辑并省去了Cache。而CPU不仅被Cache占据了大量空间,而且还有有复杂的控制逻辑和诸多优化电路,相比之下计算能力只是CPU很小的一部分。
在这里插入图片描述
从上图可以看出:
Cache, local memory: CPU > GPU
Threads(线程数): GPU > CPU
Registers: GPU > CPU 多寄存器可以支持非常多的Thread,thread需要用到register,thread数目大,register也必须得跟着很大才行。
SIMD Unit(单指令多数据流,以同步方式,在同一时间内执行同一条指令): GPU > CPU。

CPU有强大的ALU(算术运算单元),它可以在很少的时钟周期内完成算术计算。当今的CPU可以达到64bit 双精度。执行双精度浮点源算的加法和乘法只需要1~3个时钟周期。CPU的时钟周期的频率是非常高的,达到1.532~3gigahertz(千兆HZ, 10的9次方)。
大的缓存也可以降低延时。保存很多的数据放在缓存里面,当需要访问的这些数据,只要在之前访问过的,如今直接在缓存里面取即可。
复杂的逻辑控制单元。当程序含有多个分支的时候,它通过提供分支预测的能力来降低延时。
数据转发。 当一些指令依赖前面的指令结果时,数据转发的逻辑控制单元决定这些指令在pipeline中的位置并且尽可能快的转发一个指令的结果给后续的指令。这些动作需要很多的对比电路单元和转发电路单元。

GPU是基于大的吞吐量设计
GPU的特点是有很多的ALU和很少的cache。缓存的目的不是保存后面需要访问的数据的,这点和CPU不同,而是为thread提高服务的。如果有很多线程需要访问同一个相同的数据,缓存会合并这些访问,然后再去访问dram(因为需要访问的数据保存在dram中而不是cache里面),获取数据后cache会转发这个数据给对应的线程,这个时候是数据转发的角色。但是由于需要访问dram,自然会带来延时的问题。

所以与CPU擅长逻辑控制,串行的运算。和通用类型数据运算不同,GPU擅长的是大规模并发计算,这也正是密码破解等所需要的。所以GPU除了图像处理,也越来越多的参与到计算当中来。

GPU的工作大部分就是这样,计算量大,但没什么技术含量,而且要重复很多很多次。就像你有个工作需要算几亿次一百以内加减乘除一样,最好的办法就是雇上几十个小学生一起算,一人算一部分,反正这些计算也没什么技术含量,纯粹体力活而已。
而CPU就像老教授,积分微分都会算,就是工资高,一个老教授资顶二十个小学生,你要是富士康你雇哪个?
GPU就是这样,用很多简单的计算单元去完成大量的计算任务,纯粹的人海战术。这种策略基于一个前提,就是小学生A和小学生B的工作没有什么依赖性,是互相独立的。很多涉及到大量计算的问题基本都有这种特性,比如你说的破解密码,挖矿和很多图形学的计算。这些计算可以分解为多个相同的简单小任务,每个任务就可以分给一个小学生去做。但还有一些任务涉及到“流”的问题。比如你去相亲,双方看着顺眼才能继续发展。总不能你这边还没见面呢,那边找人把证都给领了。这种比较复杂的问题都是CPU来做的。

总而言之,CPU和GPU因为最初用来处理的任务就不同,所以设计上有不小的区别。而某些任务和GPU最初用来解决的问题比较相似,所以用GPU来算了**。GPU的运算速度取决于雇了多少小学生**,CPU的运算速度取决于请了多么厉害的教授。教授处理复杂任务的能力是碾压小学生的,但是对于没那么复杂的任务,还是顶不住人多。当然现在的GPU也能做一些稍微复杂的工作了,相当于升级成初中生高中生的水平。但还需要CPU来把数据喂到嘴边才能开始干活,究竟还是靠CPU来管的。

二、什么是SIMD?
在这里插入图片描述

1.2 试题2(2018年上半年试题15)

在这里插入图片描述

答案:A
解析:
这一题主要考查的是计算机系统的层次结构,以下内容均取自教材:
计算机系统是一个硬件和软件的综合体,可以把它看做是按功能划分的多级层次结构
在这里插入图片描述

(1)硬联逻辑级。这是计算机的内核,由门、触发器等逻辑电路组成。
(2)微程序级。这一级的程序语言是微指令集,程序员用微指令编写的微程序一般直接由硬件执行
(3)传统机器级。这一级的机器语言是该机的指令集,程序员用机器指令编写的程序可以由微程序进行解释
(4)操作系统级。从操作系统的基本功能来看,一方面它要直接管理传统机器中的软硬件资源,另一方面它又是传统机器的延伸。
(5)汇编语言级。这一级的机器语言是汇编语言,完成汇编语言编译的程序称为汇编程序。
(6)高级语言级。这一级的机器语言就是各种高级语言,通常用编译程序来完成高级语言翻译的工作。
(7)应用语言级。这一级是为了使计算机满足某种用户而专门设计的,因此这一级的机器语言就是各种面向问题的应用语言。

1.3 试题3(2018年上半年试题16-17)

在这里插入图片描述
答案:DB
解析:
根据内容,只有相联存取才是根据内容来访问,其他都是根据存取地址来访问。
使用相联存取只有Cache。
DRAM,随机存取。
EERPROM,随机存取。
CD-ROM,串行存取。
该题主要涉及的范围是存储器系统,以下内容均取自教程
在这里插入图片描述

猜你喜欢

转载自blog.csdn.net/hayre/article/details/83451615