2019.2.14 考试T1 FFT

\(\color{#0066ff}{ 题目描述 }\)

衡水二中的机房里经常有人莫名其妙地犇雷,leizi很生气,决定要找出那个犇雷的人

机房有n个人,每个人都认为机房里有两个人可能会犇雷,其中第i个人认为xi和yi可能会在机房犇雷(1<=i,xi,yi<=n,xi!=yi) (某个人不可能资磁自己犇雷,即xi,yi!=i)

leizi决定找出两个pwang并把他们按在床上揍。leizi希望选择的方案恰好被c个人支持,一个oier会支持一个方案当且仅当至少有一个他认为的pwang被leizi揍了。

请对于所有的c∈[0,n]求出leizi选择的方案数。

\(\color{#0066ff}{输入格式}\)

从leigehhh.in读入

第一行输入一个整数n

接下来n行,每行输入两个整数xi和yi中间用空格分开。

\(\color{#0066ff}{输出格式}\)

将输出写到leigehhh.out

输出n+1行,第i行代表c=i-1时的方案数

\(\color{#0066ff}{输入样例}\)

8
5 6
5 7
5 8
6 2
2 1
7 3
1 3
1 4

\(\color{#0066ff}{输出样例}\)

0
0
1
12
10
4
1
0
0

\(\color{#0066ff}{数据范围与提示}\)

对于10%的数据,n<=100

对于30%的数据,n<=1000 且 数据随机

对于100%的数据,n<=100000

你需要提交源文件leigehhh.cpp/c/pas

本题开启special judge,如果你觉得某个子任务非常难,您可以尝试完成以下任务,并获得本测试点60%的分数:

第一行输出"IAKNOI"(不包含引号)

第二行输出对于c∈[n/4,n]的方案数之和,n/4向下取整。

例如对于样例,可以输出:

IAKNOI

28

本题使用Lemon评测,配置Lemon风格的自定义校验器。

温馨提示:1.正解不难2.如果不会正解,本题可以使用多种奇怪的方法操到好多分

\(\color{#0066ff}{ 题解 }\)

我们开一个数组,mp[i]记录对每个人有多少人支持i

\(S_{i,j}\)为同时支持i和j的人数

那么答案即为\(mp[i]+mp[j]-s[i][j]\)的桶

不难发现,\(s[i][j]\)只存在n个,而前面存在\(n^2\)

考虑算出\(mp[i]+mp[j]\)的桶,然后在桶上修改

\(t[mp[i]+mp[j]]--,t[mp[i]+mp[j]-s[i][j]]++\),直接修改

这个很容易办到

现在考虑怎么求\(mp[i]+mp[j]\)

可以列出式子,最后的桶\(ans[v]=\sum[mp[i]+mp[j]==v]\)

这启示我们对mp开桶,设为t

\(\begin{aligned} ans[v]=\sum_{mp_i+mp_j=v}t_{mp_i}*t_{mp_j}\end{aligned}\)

这是。。。卷积啊!!

一波FFT过去,ans就出来了

但其中有些值不对

比如\(t:1 \ \ 3 \ \ 2\)

FFT后4的系数为\(1*2+3*3+2*1\)

但实际上我们只有一个3,而且上面有重复

对于\(mp_i=mp_j\)的情况,不难发现只有在奇数的时候才会出现

这时候把平方减去,加上正确的贡献\(C_n^2\)即可

还要/2

最后别忘考虑那些存在s的东西

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cctype>
#include<vector>
#include<cmath>
#define LL long long

LL in() {
    char ch; LL x = 0, f = 1;
    while(!isdigit(ch = getchar()))(ch == '-') && (f = -f);
    for(x = ch ^ 48; isdigit(ch = getchar()); x = (x << 1) + (x << 3) + (ch ^ 48));
    return x * f;
}
namespace qwq {
    void in() {
        freopen("leigehhh.in", "r", stdin);
        freopen("leigehhh.out", "w", stdout);
    }
    void out() {
        fclose(stdin);
        fclose(stdout);
    }
}
using std::vector;
const int maxn = 1e5 + 100;
const double pi = acos(-1);
int t[maxn], mp[maxn];
LL tt[maxn], lst[maxn], ans[maxn];
vector<int> v[maxn];
struct node {
    double x, y;
    node(double x = 0, double y = 0): x(x), y(y) {}
    friend node operator + (const node &a, const node &b) { return node(a.x + b.x, a.y + b.y); }
    friend node operator - (const node &a, const node &b) { return node(a.x - b.x, a.y - b.y); }
    friend node operator * (const node &a, const node &b) { return node(a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x); }
    friend node operator / (const node &a, const double &b) { return node(a.x / b, a.y / b); }
}A[maxn], B[maxn], C[maxn];
int len, r[maxn];
void FFT(node *D, int flag) {
    for(int i = 0; i < len; i++) if(i < r[i]) std::swap(D[i], D[r[i]]);
    for(int l = 1; l < len; l <<= 1) {
        node w0(cos(pi / l), flag * sin(pi / l));
        for(int i = 0; i < len; i += (l << 1)) {
            node w(1, 0), *a0 = D + i, *a1 = D + i + l;
            for(int k = 0; k < l; k++, a0++, a1++, w = w * w0) {
                node tmp = *a1 * w;
                *a1 = *a0 - tmp;
                *a0 = *a0 + tmp;
            }
        }
    }
    if(!(~flag)) for(int i = 0; i < len; i++) D[i] = D[i] / len;
}
int main() {
    freopen("leigehhh.in", "r", stdin);
    freopen("leigehhh.out", "w", stdout);
    int n = in();
    int x, y;
    for(int i = 1; i <= n; i++) {
        x = in(), y = in();
        v[x].push_back(y);
        v[y].push_back(x);
        mp[x]++, mp[y]++;
    }
    for(int i = 1; i <= n; i++) {
        std::sort(v[i].begin(), v[i].end());
        for(int j = 0; j < (int)v[i].size(); j++) t[v[i][j]]++;
        for(int j = 0; j < (int)v[i].size(); j++) {
            if(j && v[i][j] == v[i][j - 1]) continue;
            ans[mp[i] + mp[v[i][j]]]--;
            ans[mp[i] + mp[v[i][j]] - t[v[i][j]]]++;
            t[v[i][j]] = 0;
        }
    }
    for(int i = 1; i <= n; i++) tt[mp[i]]++;
    for(int i = 0; i <= n; i++) B[i] = A[i] = tt[i];
    for(len = 1; len <= n + n; len <<= 1);
    for(int i = 0; i < len; i++) r[i] = (r[i >> 1] >> 1) | ((i & 1) * (len >> 1));
    FFT(A, 1), FFT(B, 1);
    for(int i = 0; i < len; i++) C[i] = A[i] * B[i];
    FFT(C, -1);
    for(int i = 0; i <= n; i++) lst[i] = (int)round(C[i].x); 
    for(int i = 0; i <= n; i++) {
        if(i & 1) continue;
        lst[i] -= tt[i >> 1] * tt[i >> 1];
        lst[i] += (tt[i >> 1] * (tt[i >> 1] - 1LL));
    }
    for(int i = 0; i <= n; i++) printf("%lld\n", (ans[i] >> 1LL) + (lst[i] >> 1LL));
    return 0;
}

一直写vector的NTT,一下子写double的FFT, 数组开小了。。。。\(100pts\to 30pts\)欲哭无泪(雾

猜你喜欢

转载自www.cnblogs.com/olinr/p/10374880.html
0条评论
添加一条新回复