Encoder-Decoder 架构实现

基于循环网络实现编解码结构,代码参考了Jason Brownlee博士博客,看上去博士也是参考官方文档的内容。

1. 本人进行了一些注释。

2. 该架构并不是循环网络特有。

3. 序列的多部预测遵循循环导出的原则。

4.其中的隐状态和细胞状态确实依赖于LSTM这个特定模型

 5. 对于上图的结构,基于循环网络的编解码结构,不忍许多人扯的血淋淋,故鄙人希望从简抓要点。

  遵循一般做事原则:找出口或入口或转折点等重要接口;分割出循环单体。

    a. 重要接口在于中间的状态

    b. 循环单体在于循环网络时间步骤

    c. 做过时间序列预测不难看出,解码器完成从不等长序列空间到状态空间的映射,状态没有时间步骤概念(指的就是在某个时间戳下;解码器就是一个一阶时间序列预测(错开一步预测);

       既然是循环就需要起始条件,这也就是跟差分方程(或者微分方程)的起始条件差不多,由编码器提供;时间序列的玩法,与经典统计中类似,一步模型的多步预测就按如下方式搞。

  1 from random import randint
  2 from numpy import array, argmax, array_equal
  3 from keras.utils import to_categorical
  4 from keras.models import Model
  5 from keras.layers import Input, LSTM, Dense
  6 
  7 # generate a sequence of random integers
  8 def generate_sequence(length, n_unique):
  9     return [randint(1, n_unique-1) for _ in range(length)]
 10 
 11 
 12 # prepare data for the LSTM
 13 def get_dataset(n_in, n_out, cardinality, n_samples):
 14     X1, X2, y = list(), list(), list()
 15     for _ in range(n_samples):
 16         # generate source sequence
 17         source = generate_sequence(n_in, cardinality)
 18         # define padded target sequence
 19         target = source[:n_out]
 20         target.reverse()
 21         # create padded input target sequence
 22         target_in = [0] + target[:-1]
 23         # encode
 24         src_encoded = to_categorical(source, num_classes=cardinality)
 25         tar_encoded = to_categorical(target, num_classes=cardinality)
 26         tar2_encoded = to_categorical(target_in, num_classes=cardinality)
 27         # store
 28         X1.append(src_encoded)
 29         X2.append(tar2_encoded)
 30         y.append(tar_encoded)
 31     return array(X1), array(X2), array(y)
 32 
 33 
 34 # returns train, inference_encoder and inference_decoder models
 35 def define_models(n_input, n_output, n_units):
 36     # 定义训练编码器
 37     encoder_inputs = Input(shape=(None, n_input))  # n_input表示特征这一维(维的大小即特征的数目,如图像的feature map)
 38     encoder = LSTM(n_units, return_state=True)  # 编码器的特征维的大小dimension(n),即单元数。
 39     encoder_outputs, state_h, state_c = encoder(encoder_inputs) # 取出输入生成的隐藏状态和细胞状态,作为解码器的隐藏状态和细胞状态的初始化值。
 40     # 定义训练解码器
 41     decoder_inputs = Input(shape=(None, n_output))   # n_output:输出响应序列的特征维的大小。
 42     decoder_lstm = LSTM(n_units, return_sequences=True, return_state=True)  # 因解码器用编码器的隐藏状态和细胞状态,所以n_units必等
 43     decoder_outputs, _, _ = decoder_lstm(decoder_inputs, initial_state=[state_h, state_c])  # 这个解码层在后面推断中会被共享!!
 44 
 45     decoder_dense = Dense(n_output, activation='softmax')    # 这个full层在后面推断中会被共享!!
 46     decoder_outputs = decoder_dense(decoder_outputs)
 47     model = Model([encoder_inputs, decoder_inputs], decoder_outputs)  # 得到以输入序列和目标序列作为输入,以目标序列的移位为输出的训练模型
 48 
 49     # 定义推断编码器  根据输入序列得到隐藏状态和细胞状态的路径图,得到模型,使用的输入到输出之间所有层的权重,与tf的预测签名一样
 50     encoder_model = Model(encoder_inputs, [state_h, state_c])   # 层编程模型很简单,只要用Model包住其输入和输出即可。
 51     #encoder_outputs, state_h, state_c = encoder(encoder_inputs)  # ? 似乎就是上面的
 52     # 定义推断解码器,由于循环网络的性质,由输入状态(前)推理出输出状态(后)。
 53     decoder_state_input_h = Input(shape=(n_units,))
 54     decoder_state_input_c = Input(shape=(n_units,))
 55 
 56     decoder_outputs, state_h, state_c = decoder_lstm(decoder_inputs, initial_state=[decoder_state_input_h, decoder_state_input_c])
 57     decoder_outputs = decoder_dense(decoder_outputs)
 58     # 由老状态更新出新的状态
 59     decoder_model = Model([decoder_inputs, decoder_state_input_h, decoder_state_input_c], [decoder_outputs, state_h, state_c])
 60     # return all models
 61     return model, encoder_model, decoder_model
 62 
 63 
 64 # generate target given source sequence
 65 def predict_sequence(infenc, infdec, source, n_steps, cardinality):
 66     # encode
 67     h_state, c_state = infenc.predict(source)  # 根据输入计算该原输入在状态空间的取值
 68     # start of sequence input
 69     target_seq = array([0.0 for _ in range(cardinality)]).reshape(1, 1, cardinality)   # shape (1, 1, 51) [[[0,0,..]]] 一步
 70     # collect predictions
 71     output = list()
 72     for t in range(n_steps):
 73         # predict next char  这是递归网络的序列预测过程
 74         yhat,h_state, c_state = infdec.predict([target_seq, h_state, c_state])   # 获得循环地推的target_seq初始值,不停迭代产生新值
 75         # store prediction
 76         output.append(yhat[0, 0, :])
 77         # update state
 78         # update target sequence
 79         target_seq = yhat
 80     return array(output)
 81 
 82 # decode a one hot encoded string
 83 def one_hot_decode(encoded_seq):
 84     return [argmax(vector) for vector in encoded_seq]
 85 
 86 # configure problem
 87 n_features = 50 + 1
 88 n_steps_in = 6
 89 n_steps_out = 3
 90 # define model
 91 train, infenc, infdec = define_models(n_features, n_features, 128)
 92 train.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['acc'])  # 这一层需要被编译
 93 # generate training dataset
 94 X1, X2, y = get_dataset(n_steps_in, n_steps_out, n_features, 100000)
 95 print(X1.shape,X2.shape,y.shape)
 96 # train model
 97 train.fit([X1, X2], y, epochs=1)
 98 # evaluate LSTM
 99 total, correct = 100, 0
100 # for _ in range(total):
101 #     X1, X2, y = get_dataset(n_steps_in, n_steps_out, n_features, 1)
102 #     target = predict_sequence(infenc, infdec, X1, n_steps_out, n_features)
103 #     if array_equal(one_hot_decode(y[0]), one_hot_decode(target)):
104 #         correct += 1
105 # print('Accuracy: %.2f%%' % (float(correct)/float(total)*100.0))
106 # spot check some examples
107 for _ in range(10):
108     X1, X2, y = get_dataset(n_steps_in, n_steps_out, n_features, 1)
109     target = predict_sequence(infenc, infdec, X1, n_steps_out, n_features)
110     print('X=%s y=%s, yhat=%s' % (one_hot_decode(X1[0]), one_hot_decode(y[0]), one_hot_decode(target)))

猜你喜欢

转载自www.cnblogs.com/wdmx/p/10280753.html
今日推荐