AI之旅(4):初识逻辑回归

前置知识

  求导

知识地图

  逻辑回归是用于分类的算法,最小的分类问题是二元分类。猫与狗,好与坏,正常与异常。掌握逻辑回归的重点,是理解S型函数在算法中所发挥的作用,以及相关推导过程。

从一个例子开始

  假设我们是信贷工作人员,有一个关于客户记录的数据集。数据集中有两个特征,x1表示月收入金额,x2表示月还贷金额。y称为标签,其中y=1表示客户发生违约。

  我们的目标是挖掘出数据间可能存在的规律,建立相应的模型,用于对新客户进行预测。假设一个新客户的收入金额是5.0,还贷金额是2.7,请判断客户最可能属于的类别。

  图中三角形表示y=1的样本,十字表示y=0的样本。一般约定将关注的重点定义为y=1的类别,在这个问题中重点是寻找可能发生违约的客户,因此将违约客户定义为y=1。

  观察上图可以发现,似乎可以用一个边界将样本分为两类。于是问题转化为如何寻找到这样的边界,能够将全部样本正确地分离,或者将最多数量的样本正确地分离。

  记得在线性回归中,假设函数是如下形式:

  以两个特征为例,这既可以表现为线性模型,对应的边界在空间中表现为一条直线:

  通过添加高阶多项式,也可以表现为非线性模型,对应的边界在空间中表现为一条曲线:

  无论是线性模型还是非线性模型,从空间的角度看,模型的作用是将空间切成两部分。从方程的角度看,模型的作用是将一个样本映射为一个实数。用一条直线来举例:

  现在的问题是这个实数的范围属于负无穷到正无穷,而通常是用概率的形式表示事物属于某一类别的可能性,因此还需要一个函数将实数映射到0和1之间。

S型函数

  想象一下这个函数应该具有的形状,当x越小时y越接近0,当x越大时y越接近1,这是一个S型的函数。S型函数有很多种,我们选择的是名为Sigmoid的函数,也叫逻辑函数。

  因为特征是用x表示,为了与特征区别开,一般使用第一种形式来表示逻辑函数。函数对应的图像如下,注意当z等于0时,Sigmoid函数的值为0.5,这是概率中的分界点

  Sigmoid函数基本性质:

  1,定义域:(-∞,+∞);

  2,值域:(0,1);

  3,函数在定义域内为连续和光滑的曲线;

  4,处处可导,导数为:g’(z)=g(z)(1-g(z));

  Sigmoid导数推导过程:

  线性回归的模型将样本映射为负无穷到正无穷间的实数,Sigmoid函数将该实数映射为0到1之间的数。两者结合使用,得到的数值可以表示样本属于某一类别的概率。

假设函数

  逻辑回归假设函数是在线性回归假设函数的基础上,再加上一个Sigmoid函数。所实现的作用是先将样本映射为一个实数,再将实数映射为一个概率,形式如下:

  一般表示概率是用如下形式表示,含义为在给定参数θ的情况下,当随机变量为x时,y的概率估计。

  因为是二元分类,显然如果一个样本预测为y=1的概率是0.7,相应的该样本预测为y=0的概率是0.3。在概率中以0.5作为分界点,假设函数所发挥的作用如下图所示:

  逻辑回归算法的最终目的,是获得合适的参数θ,用结构图的形式表示如下:

代价函数

  因为逻辑回归的假设函数是非线性函数,样本都被压缩成0到1之间的数值,所以不适合用距离来衡量模型的准确性,我们需要构造一个新的代价函数。

  上图是log(x)的图像,观察图像的趋势可以发现,当x接近1的时候,y接近0。当x接近0的时候,y接近负无穷。根据图像特性可以构造第一个代价函数。

  当样本的类别为1时,若预测样本的类别接近1,说明预测准确,代价接近0;

  当样本的类别为1时,若预测样本的类别接近0,说明预测不准确,代价接近负无穷;

  上图是log(1-x)的图像,观察图像的趋势可以发现,当x接近0的时候,y接近0。当x接近1的时候,y接近负无穷。根据图像性质可以构造第二个代价函数。

  当样本的类别为0时,若预测样本的类别接近0,说明预测准确,代价接近0;

  当样本的类别为0时,若预测样本的类别接近1,说明预测不准确,代价接近负无穷;

  根据对数函数的图像性质,可以构造出评估模型准确性的代价函数。当样本类别为1时对应第一个代价函数,为0时对应第二个代价函数。能否将两个函数合并为一个函数呢?

  因为y的取值只有1和0,当y等于1时函数第二部分消失,当y等于0时函数第一部分消失,这个函数包含了所有可能出现的四种情况。所以数据集的平均代价函数如下:

  注:这里的log函数特指e为底的对数;

  所谓代价,是给予算法判断错误的惩罚当预测准确时,代价接近0;当预测不准确时,代价接近负无穷。因此目标是将代价函数最大化,逻辑回归的代价函数有全局最优解

代价函数的导数

  与线性回归类似,逻辑回归也是通过梯度更新的方法求最优解。首先要求出代价函数的偏导数,通过将其他变量视为常数,运用链式法则逐层求导,以下为推导过程:

  第一层(蓝色)对e为底的对数求导,第二层(红色)对Sigmoid函数求导,第三层(绿色)对线性模型求导。

梯度上升

  梯度上升法是让参数向偏导数的同方向调整,反复迭代,逐步靠近全局最优点的方法。从直观上看参数从任意一个位置出发,总是一步步接近最高点的位置,如下图所示:

  梯度上升公式(示例):

  注:α为学习率;

  注:n为特征的数量;

  在实际运用中参数θ必须同时更新,一次梯度上升指的是所有的参数运用旧的参数同时更新一次。不能先更新第一个参数,然后用更新后的第一个参数去更新第二个参数。

  下图为两个正常运行的梯度上升的代价函数图像:

  对比线性回归中运用的梯度下降法,可以发现这两者本质上是同一种方法,都是通过对偏导数的反复更新逐步靠近全局最优点。

多元分类

  如果给出一个包含多个类别的数据集,如何用逻辑回归算法对其进行分类呢?我们可以将这个问题转化为多个独立的二元分类问题。

  将第一类视为正项,其他项视为负项,训练出第一个分类器;

  将第二类视为正项,其他项视为负项,训练出第二个分类器;

  将第三类视为正项,其他项视为负项,训练出第三个分类器;

  ......

  有了多个分类器以后,将要预测的新样本同时输入到多个分类器中,每个分类器会给出样本属于该类别的概率。哪一个类别的概率最高,就预测新样本属于哪一类。

向量化

  如果构建一个最小单位的逻辑回归模型,将梯度下降的方程展开后,经过适当的变换,会发现逻辑回归的梯度上升可以用一行代码表达。

  注:X是样本构成的矩阵,矩阵规格为(m×n);

  注:θ是参数构成的向量,向量规格为(n×1);

  注:h是假设函数,h=g(Xθ);

  注:g是Sigmoid函数;

  注:说明原理时向量的下标是从0开始,实际运用中向量的下标是从1开始;

总结

  逻辑回归是用于分类的算法,通过线性模型将样本映射为实数,通过Sigmoid函数将实数映射为概率,用概率衡量事物属于某一类别的可能性。这是逻辑回归的假设函数。

  根据对数函数的图像性质,构造出符合要求的代价函数,这个代价函数有全局最优解。通过梯度上升的方法反复迭代,得到代表全局最优解的参数θ。这是逻辑回归的实现方法。

  至此,我们掌握了两个基本的算法。线性回归可用于预测趋势,逻辑回归可用于判断类别。通过对这两个算法进行变换组合,可以构造出更强大的算法,比如神经网络。

  回到开头的例子,将这个小小的数据集扔到逻辑回归算法中学习后,可以预测新客户属于y=1的可能性约为85%。去寻找更多的数据集来实践吧,实践是记忆的最好方法。

非正规代码

版权声明

  1,本文为原创文章,未经作者授权禁止引用、复制、转载、摘编。

  2,对于有上述行为者,作者将保留追究其法律责任的权利。

Tieven

2019.1.7

[email protected]

猜你喜欢

转载自www.cnblogs.com/tieven/p/10280145.html
今日推荐