python3__深度学习:计算机视觉__Gamma变换

【参考资料】https://blog.csdn.net/lichengyu/article/details/8457425

                     http://www.jb51.net/article/137566.htm

1.什么是Gamma变换

Gamma变换是对输入图像灰度值进行的非线性操作,使输出图像灰度值与输入图像灰度值呈指数关系:这个指数即为Gamma。

Gamma变换就是用来图像增强,其提升了暗部细节,简单来说就是通过非线性变换,让图像从暴光强度的线性响应变得更接近人眼感受的响应,即将漂白(相机曝光)或过暗(曝光不足)的图片,进行矫正。

经过Gamma变换后的输入和输出图像灰度值关系如图1所示:横坐标是输入灰度值,纵坐标是输出灰度值,蓝色曲线是gamma值小于1时的输入输出关系,红色曲线是gamma值大于1时的输入输出关系。可以观察到,当gamma值小于1时(蓝色曲线),图像的整体亮度值得到提升,同时低灰度处的对比度得到增加,更利于分辩低灰度值时的图像细节。

图1  Gamma校正

二、为什么进行Gamma变换

1. 人眼对外界光源的感光值与输入光强不是呈线性关系的,而是呈指数型关系的。在低照度下,人眼更容易分辨出亮度的变化,随着照度的增加,人眼不易分辨出亮度的变化。而摄像机感光与输入光强呈线性关系。如图2所示:

图2  人眼和摄像机的感光与实际输入光强的关系

为方便人眼辨识图像,需要将摄像机采集的图像进行Gamma变换。

扫描二维码关注公众号,回复: 4906903 查看本文章

2. 为能更有效的保存图像亮度信息,需进行Gamma变换。

未经Gamma变换和经过Gamma变换保存图像信息如图3所示:

图3  未经Gamma变换和经过Gamma变换保存图像信息

可以观察到,未经Gamma变换的情况下,低灰度时,有较大范围的灰度值被保存成同一个值,造成信息丢失;同时高灰度值时,很多比较接近的灰度值却被保存成不同的值,造成空间浪费。经过Gamma变换后,改善了存储的有效性和效率。

三、Gamma变换的基本形式

大于1时,对图像的灰度分布直方图具有拉伸作用(使灰度向高灰度值延展),而小于1时,对图像的灰度分布直方图具有收缩作用(是使灰度向低灰度值方向靠拢)。

四、Python下有关Gamma变换的示例代码

import cv2
#分道计算每个通道的直方图
img0 = cv2.imread('12.jpg')
hist_b = cv2.calcHist([img0],[0],None,[256],[0,256])
hist_g = cv2.calcHist([img0],[1],None,[256],[0,256])
hist_r = cv2.calcHist([img0],[2],None,[256],[0,256])
def gamma_trans(img,gamma):
    #具体做法先归一化到1,然后gamma作为指数值求出新的像素值再还原
    gamma_table = [np.power(x/255.0,gamma)*255.0 for x in range(256)]
    gamma_table = np.round(np.array(gamma_table)).astype(np.uint8)
    #实现映射用的是Opencv的查表函数
    return cv2.LUT(img0,gamma_table)
img0_corrted = gamma_trans(img0, 0.5)
cv2.imshow('img0',img0)
cv2.imshow('gamma_image',img0_corrted)
cv2.imwrite('gamma_image.png',img0_corrted)
#分通道计算Gamma校正后的直方图
hist_b_c =cv2.calcHist([img0_corrted],[0],None,[256],[0,256])
hist_g_c =cv2.calcHist([img0_corrted],[1],None,[256],[0,256])
hist_r_c =cv2.calcHist([img0_corrted],[2],None,[256],[0,256])
fig = plt.figure('gamma')
pix_hists = [[hist_b, hist_g, hist_r],
    [hist_b_c, hist_g_c, hist_r_c]]
pix_vals = range(256)
for sub_plt, pix_hist in zip([121, 122], pix_hists):
    ax = fig.add_subplot(sub_plt, projection='3d')
    for c, z, channel_hist in zip(['b', 'g', 'r'], [20, 10, 0], pix_hist):
          cs = [c] * 256
          ax.bar(pix_vals, channel_hist, zs=z, zdir='y', color=cs, alpha=0.618, edgecolor='none', lw=0)
    ax.set_xlabel('Pixel Values')
    ax.set_xlim([0, 256])
    ax.set_ylabel('Count')
    ax.set_zlabel('Channels')
plt.show()
cv2.waitKey()

猜你喜欢

转载自blog.csdn.net/admin_maxin/article/details/85053913
今日推荐