MNIST数字识别问题(Tensorflow)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/casgj16/article/details/75578339

一、首先介绍tensorflow持久化的工作原理,持久化代码实现。

1.1使用tf.train.Saver类,以下代码给出了保存tensorflow计算图的方法。

import tensorflow as tf
v1=tf.Variable(tf.constant(1.0,shape=[1]),name="v1")
v2=tf.Variable(tf.constant(2.0,shape=[1]),name="v2")
result=v1+v2
init_op=tf.initialize_all_variables()
saver=tf.train.Saver()
with tf.Session() as sess:
    sess.run(init_op)
    saver.save(sess,"D:/gj20170720/model.ckpt")

1.2加载已保存的模型的方法

import tensorflow as tf
__author__ = 'casgj'
v1=tf.Variable(tf.constant(1.0,shape=[1]),name="v1")
v2=tf.Variable(tf.constant(2.0,shape=[1]),name="v2")
result=v1 + v2
saver=tf.train.Saver()
with tf.Session() as sess:
    saver.restore(sess,"D:/gj20170720/model.ckpt")
    print(sess.run(result))

如果不希望重复定义图上的运算,也可以:

import tensorflow as tf
__author__ = 'casgj'

saver=tf.train.import_meta_graph(("D:/gj20170720/model.ckpt.meta"))

with tf.Session() as sess:
    saver.restore(sess,"D:/gj20170720/model.ckpt")
    print(sess.run


1.3变量重命名的使用

__author__ = 'casgj'
import tensorflow as tf
v1=tf.Variable(tf.constant(1.0,shape=[1]),name="other-v1")
v2=tf.Variable(tf.constant(2.0,shape=[1]),name="other-v2")
saver=tf.train.Saver({"v1":v1,"v2":v2})


1.4保存滑动平均模型的运用

_author__ = 'casgj'
import tensorflow as tf
v=tf.Variable(0,dtype=tf.float32,name="v")
for variables in tf.all_variables():
    print(variables.name)

ema=tf.train.ExponentialMovingAverage(0.99)
maintain_averages_op=ema.apply(tf.all_variables())


for variables in tf.all_variables():
    print(variables.name)


saver=tf.train.Saver()
with tf.Session() as sess:
    init_op=tf.initialize_all_variables()
    sess.run(init_op)

    sess.run(tf.assign(v,10))
    sess.run(maintain_averages_op)
    saver.save(sess,"D:/gj20170720/model.ckpt")
    print(sess.run([v,ema.average(v)]))


1.5 variables_to_restore的样例

__author__ = 'casgj'
import tensorflow as tf
v=tf.Variable(0,dtype=tf.float32,name="v")
ema=tf.train.ExponentialMovingAverage(0.99)
print(ema.variables_to_restore())

saver=tf.train.Saver(ema.variables_to_restore())
with tf.Session() as sess:
    saver.restore(sess,"D:/gj20170720/model.ckpt")
    print(sess.run(v))

二、用完整的tensorflow程序解决MNIST问题

2.1前向算法

      首先将前向传播过程抽象出来,作为一个可以作为训练测试共享的模块,取名为mnist_inference.py,代码如下:

# -*- coding: utf-8 -*-
import tensorflow as tf

# 定义神经网络结构相关的参数
INPUT_NODE = 784
OUTPUT_NODE = 10
LAYER1_NODE = 500

# 通过tf.get_variable函数来获取变量。在训练神经网络时会创建这些变量;在测试时会通
# 过保存的模型加载这些变量的取值。而且更加方便的是,因为可以在变量加载时将滑动平均变
# 量重命名,所以可以直接通过相同的名字在训练时使用变量自身,而在测试时使用变量的滑动
# 平均值。在这个函数中也会将变量的正则化损失加入到损失集合。
def get_weight_variable(shape, regularizer):
    weights = tf.get_variable(
        "weights", shape,
        initializer=tf.truncated_normal_initializer(stddev=0.1)
    )
    # 当给出了正则化生成函数时,将当前变量的正则化损失加入名字为losses的集合。在这里
    # 使用了add_to_collection函数将一个张量加入一个集合,而这个集合的名称为losses    # 这是自定义的集合,不在TensorFlow自动管理的集合列表中。
    if regularizer != None:
        tf.add_to_collection('losses', regularizer(weights))
    return weights

# 定义神经网络的前向传播过程
def inference(input_tensor, regularizer):
    # 声明第一层神经网络的变量并完成前向传播过程。
    with tf.variable_scope('layer1'):
        # 这里通过tf.get_variable或者tf.Variable没有本质区别,因为在训练或者测试
        # 中没有在同一个程序中多次调用这个函数。如果在同一个程序中多次调用,在第一次
        # 调用之后需要将reuse参数设置为True        weights = get_weight_variable(
            [INPUT_NODE, LAYER1_NODE], regularizer
        )
        biases = tf.get_variable(
            "biases", [LAYER1_NODE],
            initializer=tf.constant_initializer(0.0)
        )
        layer1 = tf.nn.relu(tf.matmul(input_tensor, weights)+biases)

    # 类似的声明第二层神经网络的变量并完成前向传播过程。
    with tf.variable_scope('layer2'):
        weights = get_weight_variable(
            [LAYER1_NODE, OUTPUT_NODE], regularizer
        )
        biases = tf.get_variable(
            "biases", [OUTPUT_NODE],
            initializer=tf.constant_initializer(0.0)
        )
        layer2 = tf.matmul(layer1, weights) + biases

    # 返回最后前向传播的结果
    return layer2


2.2训练模块

      将训练模型的模块提取出来,训练模块命名为mnist_train.py,在下面的代码中每过1000个step我们就保存一次模型。代码如下:

# -*- coding: utf-8 -*-
import os

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

# 加载mnist_inference.py中定义的常量和前向传播的函数。
import mnist_inference

# 配置神经网络的参数。
BATCH_SIZE = 100
LEARNING_RATE_BASE = 0.8
LEARNING_RATE_DECAY = 0.99
REGULARIZATION_RATE = 0.0001
TRAINING_STEPS = 30000
MOVING_AVERAGE_DECAY = 0.99

# 模型保存的路径和文件名
MODEL_SAVE_PATH = "D:\gj20170720"
MODEL_NAME = "model.ckpt"

def train(mnist):
    # 定义输入输出placeholder    x = tf.placeholder(tf.float32, [None, mnist_inference.INPUT_NODE], name='x-input')
    y_ = tf.placeholder(tf.float32, [None, mnist_inference.OUTPUT_NODE], name='y-input')

    regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)
    # 直接使用mnist_inference.py中定义的前向传播过程
    y = mnist_inference.inference(x, regularizer)
    global_step = tf.Variable(0, trainable=False)

    # 定义损失函数、学习率、滑动平均操作以及训练过程
    variable_averages = tf.train.ExponentialMovingAverage(
        MOVING_AVERAGE_DECAY, global_step
    )
    variable_averages_op = variable_averages.apply(
        tf.trainable_variables()
    )
    cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
        logits=y, labels=tf.argmax(y_, 1)
    )
    cross_entropy_mean = tf.reduce_mean(cross_entropy)
    loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses'))
    learning_rate = tf.train.exponential_decay(
        LEARNING_RATE_BASE,
        global_step,
        mnist.train.num_examples / BATCH_SIZE,
        LEARNING_RATE_DECAY
    )
    train_step = tf.train.GradientDescentOptimizer(learning_rate)\
                   .minimize(loss, global_step=global_step)
    with tf.control_dependencies([train_step, variable_averages_op]):
        train_op = tf.no_op(name='train')

    # 初始化TensorFlow持久化类
    saver = tf.train.Saver()
    with tf.Session() as sess:
        tf.global_variables_initializer().run()

        # 在训练过程中不再测试模型在验证数据上的表现,验证和测试的过程将会有一个独
        # 立的程序来完成。
        for i in range(TRAINING_STEPS):
            xs, ys = mnist.train.next_batch(BATCH_SIZE)
            _, loss_value, step = sess.run([train_op, loss, global_step],
                                           feed_dict={x: xs, y_: ys})
            # 1000轮保存一次模型
            if i % 1000 == 0:
                # 输出当前的训练情况。这里只输出了模型在当前训练batch上的损失
                # 函数大小。通过损失函数的大小可以大概了解训练的情况。在验证数
                # 据集上正确率的信息会有一个单独的程序来生成
                print("After %d training step(s), loss on training "
                      "batch is %g." % (step, loss_value))
                # 保存当前的模型。注意这里给出了global_step参数,这样可以让每个
                # 被保存的模型的文件名末尾加上训练的轮数,比如“model.ckpt-1000”                # 表示训练1000轮之后得到的模型。
                saver.save(
                    sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME),
                    global_step=global_step
                )
def main(argv=None):
    mnist = input_data.read_data_sets("/tmp/data", one_hot=True)
    train(mnist)

if __name__ == "__main__":
    tf.app.run()

运行结果:

                           

2.3验证与测试模块

       验证模块与测试模块可以对保存好的训练模型进行验证与测试,在下面的代码中选择每过10秒钟验证一个最新的模型。这样做的好处是可以将训练与验证或者测试分割开来,同时进行。

# -*- coding: utf-8 -*-
import time
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

# 加载mnist_inference.py mnist_train.py中定义的常量和函数。
import mnist_inference
import mnist_train

# 10秒加载一次最新的模型,并且在测试数据上测试最新模型的正确率
EVAL_INTERVAL_SECS = 10

def evaluate(mnist):
    with tf.Graph().as_default() as g:
        # 定义输入输出的格式。
        x = tf.placeholder(
            tf.float32, [None, mnist_inference.INPUT_NODE], name='x-input'
        )
        y_ = tf.placeholder(
            tf.float32, [None, mnist_inference.OUTPUT_NODE], name='y-input'
        )
        validate_feed = {x: mnist.validation.images,
                         y_: mnist.validation.labels}

        # 直接通过调用封装好的函数来计算前向传播的结果。因为测试时不关注ze正则化损失的值
        # 所以这里用于计算正则化损失的函数被设置为None        y = mnist_inference.inference(x, None)

        # 使用前向传播的结果计算正确率。如果需要对未知的样例进行分类,那么使用
        # tf.argmax(y,1)就可以得到输入样例的预测类别了。
        correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

        # 通过变量重命名的方式来加载模型,这样在前向传播的过程中就不需要调用求滑动平均
        # 的函数来获取平均值了。这样就可以完全共用mnist_inference.py中定义的
        # 前向传播过程。
        variable_averages = tf.train.ExponentialMovingAverage(
            mnist_train.MOVING_AVERAGE_DECAY
        )
        variables_to_restore = variable_averages.variables_to_restore()
        saver = tf.train.Saver(variables_to_restore)

        # 每隔EVAL_INTERVAL_SECS秒调用一次计算正确率的过程以检验训练过程中正确率的
        # 变化。
        while True:
            with tf.Session() as sess:
                # tf.train.get_checkpoint_state函数会通过checkpoint文件自动
                # 找到目录中最新模型的文件名。
                ckpt = tf.train.get_checkpoint_state(
                    mnist_train.MODEL_SAVE_PATH
                )
                if ckpt and ckpt.model_checkpoint_path:
                    # 加载模型。
                    saver.restore(sess, ckpt.model_checkpoint_path)
                    # 通过文件名得到模型保存时迭代的轮数。
                    global_step = ckpt.model_checkpoint_path\
                                      .split('/')[-1].split('-')[-1]
                    accuracy_score = sess.run(accuracy,
                                              feed_dict=validate_feed)
                    print("After %s training step(s), validation "
                          "accuracy = %g" % (global_step, accuracy_score))
                else:
                    print("No checkpoint file found")
                    return
            time.sleep(EVAL_INTERVAL_SECS)

def main(argv=None):
    mnist = input_data.read_data_sets("/tmp/data", one_hot=True)
    evaluate(mnist)

if __name__ == "__main__":
    tf.app.run()

运行结果:


猜你喜欢

转载自blog.csdn.net/casgj16/article/details/75578339
今日推荐