Spark Streaming性能优化: 如何在生产环境下动态应对流数据峰值

1、为什么引入Backpressure 

    默认情况下,Spark Streaming通过Receiver以生产者生产数据的速率接收数据,计算过程中会出现batch processing time > batch interval的情况,其中batch processing time 为实际计算一个批次花费时间, batch interval为Streaming应用设置的批处理间隔。这意味着Spark Streaming的数据接收速率高于Spark从队列中移除数据的速率,也就是数据处理能力低,在设置间隔内不能完全处理当前接收速率接收的数据。如果这种情况持续过长的时间,会造成数据在内存中堆积,导致Receiver所在Executor内存溢出等问题(如果设置StorageLevel包含disk, 则内存存放不下的数据会溢写至disk, 加大延迟)。Spark 1.5以前版本,用户如果要限制Receiver的数据接收速率,可以通过设置静态配制参数“spark.streaming.receiver.maxRate
”的值来实现,此举虽然可以通过限制接收速率,来适配当前的处理能力,防止内存溢出,但也会引入其它问题。比如:producer数据生产高于maxRate,当前集群处理能力也高于maxRate,这就会造成资源利用率下降等问题。为了更好的协调数据接收速率与资源处理能力,Spark Streaming 从v1.5开始引入反压机制(back-pressure),通过动态控制数据接收速率来适配集群数据处理能力。
2、Backpressure
      Spark Streaming Backpressure: 根据JobScheduler反馈作业的执行信息来动态调整Receiver数据接收率。通过属性“spark.streaming.backpressure.enabled”来控制是否启用backpressure机制,默认值false,即不启用。

附spark2.4.0官网截图:


2.1 Streaming架构如下图所示(详见Streaming数据接收过程文档和Streaming 源码解析)

2.2 BackPressure执行过程如下图所示:
  在原架构的基础上加上一个新的组件RateController,这个组件负责监听“OnBatchCompleted”事件,然后从中抽取processingDelay 及schedulingDelay信息. Estimator依据这些信息估算出最大处理速度(rate),最后由基于Receiver的Input Stream将rate通过ReceiverTracker与ReceiverSupervisorImpl转发给BlockGenerator(继承自RateLimiter).

3、BackPressure 源码解析
3.1 RateController类体系
RatenController 继承自StreamingListener. 用于处理BatchCompleted事件。核心代码为:

/**
 * A StreamingListener that receives batch completion updates, and maintains
 * an estimate of the speed at which this stream should ingest messages,
 * given an estimate computation from a `RateEstimator`
 */
private[streaming] abstract class RateController(val streamUID: Int, rateEstimator: RateEstimator)
    extends StreamingListener with Serializable {

  init()

  protected def publish(rate: Long): Unit

  @transient
  implicit private var executionContext: ExecutionContext = _

  @transient
  private var rateLimit: AtomicLong = _

  /**
   * An initialization method called both from the constructor and Serialization code.
   */
  private def init() {
    executionContext = ExecutionContext.fromExecutorService(
      ThreadUtils.newDaemonSingleThreadExecutor("stream-rate-update"))
    rateLimit = new AtomicLong(-1L)
  }

  private def readObject(ois: ObjectInputStream): Unit = Utils.tryOrIOException {
    ois.defaultReadObject()
    init()
  }

  /**
   * Compute the new rate limit and publish it asynchronously.
   */
  private def computeAndPublish(time: Long, elems: Long, workDelay: Long, waitDelay: Long): Unit =
    Future[Unit] {
      val newRate = rateEstimator.compute(time, elems, workDelay, waitDelay)
      newRate.foreach { s =>
        rateLimit.set(s.toLong)
        publish(getLatestRate())
      }
    }

  def getLatestRate(): Long = rateLimit.get()

  override def onBatchCompleted(batchCompleted: StreamingListenerBatchCompleted) {
    val elements = batchCompleted.batchInfo.streamIdToInputInfo

    for {
      processingEnd <- batchCompleted.batchInfo.processingEndTime
      workDelay <- batchCompleted.batchInfo.processingDelay
      waitDelay <- batchCompleted.batchInfo.schedulingDelay
      elems <- elements.get(streamUID).map(_.numRecords)
    } computeAndPublish(processingEnd, elems, workDelay, waitDelay)
  }
}

3.2 RateController的注册
JobScheduler启动时会抽取在DStreamGraph中注册的所有InputDstream中的rateController,并向ListenerBus注册监听. 此部分代码如下:

def start(): Unit = synchronized {
    if (eventLoop != null) return // scheduler has already been started

    logDebug("Starting JobScheduler")
    eventLoop = new EventLoop[JobSchedulerEvent]("JobScheduler") {
      override protected def onReceive(event: JobSchedulerEvent): Unit = processEvent(event)

      override protected def onError(e: Throwable): Unit = reportError("Error in job scheduler", e)
    }
    eventLoop.start()

    // attach rate controllers of input streams to receive batch completion updates
    for {
      inputDStream <- ssc.graph.getInputStreams
      rateController <- inputDStream.rateController
    } ssc.addStreamingListener(rateController)

    listenerBus.start()
    receiverTracker = new ReceiverTracker(ssc)
    inputInfoTracker = new InputInfoTracker(ssc)

    val executorAllocClient: ExecutorAllocationClient = ssc.sparkContext.schedulerBackend match {
      case b: ExecutorAllocationClient => b.asInstanceOf[ExecutorAllocationClient]
      case _ => null
    }

    executorAllocationManager = ExecutorAllocationManager.createIfEnabled(
      executorAllocClient,
      receiverTracker,
      ssc.conf,
      ssc.graph.batchDuration.milliseconds,
      clock)
    executorAllocationManager.foreach(ssc.addStreamingListener)
    receiverTracker.start()
    jobGenerator.start()
    executorAllocationManager.foreach(_.start())
    logInfo("Started JobScheduler")
  }

3.3 BackPressure执行过程分析
BackPressure 执行过程分为BatchCompleted事件触发和事件处理两个过程
3.3.1 BatchCompleted触发过程
对BatchedCompleted的分析,应该从JobGenerator入手,因为BatchedCompleted是批次处理结束的标志,也就是JobGenerator产生的作业执行完成时触发的,因此进行作业执行分析。
Streaming 应用中JobGenerator每个Batch Interval都会为应用中的每个Output Stream建立一个Job, 该批次中的所有Job组成一个Job Set.使用JobScheduler的submitJobSet进行批量Job提交。此部分代码结构如下所示:


  /** Generate jobs and perform checkpointing for the given `time`.  */
  private def generateJobs(time: Time) {
    // Checkpoint all RDDs marked for checkpointing to ensure their lineages are
    // truncated periodically. Otherwise, we may run into stack overflows (SPARK-6847).
    ssc.sparkContext.setLocalProperty(RDD.CHECKPOINT_ALL_MARKED_ANCESTORS, "true")
    Try {
      jobScheduler.receiverTracker.allocateBlocksToBatch(time) // allocate received blocks to batch
      graph.generateJobs(time) // generate jobs using allocated block
    } match {
      case Success(jobs) =>
        val streamIdToInputInfos = jobScheduler.inputInfoTracker.getInfo(time)
        jobScheduler.submitJobSet(JobSet(time, jobs, streamIdToInputInfos))
      case Failure(e) =>
        jobScheduler.reportError("Error generating jobs for time " + time, e)
        PythonDStream.stopStreamingContextIfPythonProcessIsDead(e)
    }
    eventLoop.post(DoCheckpoint(time, clearCheckpointDataLater = false))
  }

其中,sumitJobSet会创建固定数量的后台线程(具体由“spark.streaming.concurrentJobs”指定),去处理Job Set中的Job. 具体实现逻辑为:

  def submitJobSet(jobSet: JobSet) {
    if (jobSet.jobs.isEmpty) {
      logInfo("No jobs added for time " + jobSet.time)
    } else {
      listenerBus.post(StreamingListenerBatchSubmitted(jobSet.toBatchInfo))
      jobSets.put(jobSet.time, jobSet)
      jobSet.jobs.foreach(job => jobExecutor.execute(new JobHandler(job)))
      logInfo("Added jobs for time " + jobSet.time)
    }
  }

其中JobHandler用于执行Job及处理Job执行结果信息。当Job执行完成时会产生JobCompleted事件. JobHandler的具体逻辑如下面代码所示:

  private class JobHandler(job: Job) extends Runnable with Logging {
    import JobScheduler._

    def run() {
      val oldProps = ssc.sparkContext.getLocalProperties
      try {
        ssc.sparkContext.setLocalProperties(SerializationUtils.clone(ssc.savedProperties.get()))
        val formattedTime = UIUtils.formatBatchTime(
          job.time.milliseconds, ssc.graph.batchDuration.milliseconds, showYYYYMMSS = false)
        val batchUrl = s"/streaming/batch/?id=${job.time.milliseconds}"
        val batchLinkText = s"[output operation ${job.outputOpId}, batch time ${formattedTime}]"

        ssc.sc.setJobDescription(
          s"""Streaming job from <a href="$batchUrl">$batchLinkText</a>""")
        ssc.sc.setLocalProperty(BATCH_TIME_PROPERTY_KEY, job.time.milliseconds.toString)
        ssc.sc.setLocalProperty(OUTPUT_OP_ID_PROPERTY_KEY, job.outputOpId.toString)
        // Checkpoint all RDDs marked for checkpointing to ensure their lineages are
        // truncated periodically. Otherwise, we may run into stack overflows (SPARK-6847).
        ssc.sparkContext.setLocalProperty(RDD.CHECKPOINT_ALL_MARKED_ANCESTORS, "true")

        // We need to assign `eventLoop` to a temp variable. Otherwise, because
        // `JobScheduler.stop(false)` may set `eventLoop` to null when this method is running, then
        // it's possible that when `post` is called, `eventLoop` happens to null.
        var _eventLoop = eventLoop
        if (_eventLoop != null) {
          _eventLoop.post(JobStarted(job, clock.getTimeMillis()))
          // Disable checks for existing output directories in jobs launched by the streaming
          // scheduler, since we may need to write output to an existing directory during checkpoint
          // recovery; see SPARK-4835 for more details.
          SparkHadoopWriterUtils.disableOutputSpecValidation.withValue(true) {
            job.run()
          }
          _eventLoop = eventLoop
          if (_eventLoop != null) {
            _eventLoop.post(JobCompleted(job, clock.getTimeMillis()))
          }
        } else {
          // JobScheduler has been stopped.
        }
      } finally {
        ssc.sparkContext.setLocalProperties(oldProps)
      }
    }
  }
}

当Job执行完成时,向eventLoop发送JobCompleted事件。EventLoop事件处理器接到JobCompleted事件后将调用handleJobCompletion 来处理Job完成事件。handleJobCompletion使用Job执行信息创建StreamingListenerBatchCompleted事件并通过StreamingListenerBus向监听器发送。实现如下:

  private def handleJobCompletion(job: Job, completedTime: Long) {
    val jobSet = jobSets.get(job.time)
    jobSet.handleJobCompletion(job)
    job.setEndTime(completedTime)
    listenerBus.post(StreamingListenerOutputOperationCompleted(job.toOutputOperationInfo))
    logInfo("Finished job " + job.id + " from job set of time " + jobSet.time)
    if (jobSet.hasCompleted) {
      listenerBus.post(StreamingListenerBatchCompleted(jobSet.toBatchInfo))
    }
    job.result match {
      case Failure(e) =>
        reportError("Error running job " + job, e)
      case _ =>
        if (jobSet.hasCompleted) {
          jobSets.remove(jobSet.time)
          jobGenerator.onBatchCompletion(jobSet.time)
          logInfo("Total delay: %.3f s for time %s (execution: %.3f s)".format(
            jobSet.totalDelay / 1000.0, jobSet.time.toString,
            jobSet.processingDelay / 1000.0
          ))
        }
    }
  }

3.3.2、BatchCompleted事件处理过程
StreamingListenerBus将事件转交给具体的StreamingListener,因此BatchCompleted将交由RateController进行处理。RateController接到BatchCompleted事件后将调用onBatchCompleted对事件进行处理。

  override def onBatchCompleted(batchCompleted: StreamingListenerBatchCompleted) {
    val elements = batchCompleted.batchInfo.streamIdToInputInfo

    for {
      processingEnd <- batchCompleted.batchInfo.processingEndTime
      workDelay <- batchCompleted.batchInfo.processingDelay
      waitDelay <- batchCompleted.batchInfo.schedulingDelay
      elems <- elements.get(streamUID).map(_.numRecords)
    } computeAndPublish(processingEnd, elems, workDelay, waitDelay)
  }
}

onBatchCompleted会从完成的任务中抽取任务的执行延迟和调度延迟,然后用这两个参数用RateEstimator(目前存在唯一实现PIDRateEstimator,proportional-integral-derivative (PID) controller, PID控制器)估算出新的rate并发布。代码如下:

  /**
   * Compute the new rate limit and publish it asynchronously.
   */
  private def computeAndPublish(time: Long, elems: Long, workDelay: Long, waitDelay: Long): Unit =
    Future[Unit] {
      val newRate = rateEstimator.compute(time, elems, workDelay, waitDelay)
      newRate.foreach { s =>
        rateLimit.set(s.toLong)
        publish(getLatestRate())
      }
    }

publish的功能为新生成的rate 借助ReceiverTracker进行转发。ReceiverTracker将rate包装成UpdateReceiverRateLimit事交ReceiverTrackerEndpoint:

  /** Update a receiver's maximum ingestion rate */
  def sendRateUpdate(streamUID: Int, newRate: Long): Unit = synchronized {
    if (isTrackerStarted) {
      endpoint.send(UpdateReceiverRateLimit(streamUID, newRate))
    }
  }

ReceiverTrackerEndpoint接到消息后,其将会从receiverTrackingInfos列表中获取Receiver注册时使用的endpoint(实为ReceiverSupervisorImpl),再将rate包装成UpdateLimit发送至endpoint.其接到信息后,使用updateRate更新BlockGenerators(RateLimiter子类),来计算出一个固定的令牌间隔。

其中RateLimiter的updateRate实现如下:

  /**
   * Set the rate limit to `newRate`. The new rate will not exceed the maximum rate configured by
   * {{{spark.streaming.receiver.maxRate}}}, even if `newRate` is higher than that.
   *
   * @param newRate A new rate in records per second. It has no effect if it's 0 or negative.
   */
  private[receiver] def updateRate(newRate: Long): Unit =
    if (newRate > 0) {
      if (maxRateLimit > 0) {
        rateLimiter.setRate(newRate.min(maxRateLimit))
      } else {
        rateLimiter.setRate(newRate)
      }
    }

setRate的实现如下:

/**
   * Updates the stable rate of this {@code RateLimiter}, that is, the
   * {@code permitsPerSecond} argument provided in the factory method that
   * constructed the {@code RateLimiter}. Currently throttled threads will <b>not</b>
   * be awakened as a result of this invocation, thus they do not observe the new rate;
   * only subsequent requests will.
   *
   * <p>Note though that, since each request repays (by waiting, if necessary) the cost
   * of the <i>previous</i> request, this means that the very next request
   * after an invocation to {@code setRate} will not be affected by the new rate;
   * it will pay the cost of the previous request, which is in terms of the previous rate.
   *
   * <p>The behavior of the {@code RateLimiter} is not modified in any other way,
   * e.g. if the {@code RateLimiter} was configured with a warmup period of 20 seconds,
   * it still has a warmup period of 20 seconds after this method invocation.
   *
   * @param permitsPerSecond the new stable rate of this {@code RateLimiter}.
   */
  public final void setRate(double permitsPerSecond) {
    Preconditions.checkArgument(permitsPerSecond > 0.0
        && !Double.isNaN(permitsPerSecond), "rate must be positive");
    synchronized (mutex) {
      resync(readSafeMicros());
      double stableIntervalMicros = TimeUnit.SECONDS.toMicros(1L) / permitsPerSecond;
      this.stableIntervalMicros = stableIntervalMicros;
      doSetRate(permitsPerSecond, stableIntervalMicros);
    }
  }

到此,backpressure反压机制调整rate结束。

参考:https://www.cnblogs.com/itboys/p/6486089.html

猜你喜欢

转载自blog.csdn.net/u012829233/article/details/85122139