JAVA并发容器:JDK1.7 与 1.8 ConcurrentHashMap 区别

生活

为什么我们总是没有时间把事情做对,却有时间做完它?

了解ConcurrentHashMap

工作中常用到hashMap,但是HashMap在多线程高并发场景下并不是线程安全的。
所以引入了ConcurrentHashMap,它是HashMap的线程安全版本,采用了分段加锁的方式来保证线程安全,同样在高并发的场景下有较好的性能。

ConcurrentHashMap 组成

ConcurrentHashMap 底层通过分段锁的形式实现,他的底层一共16个Segment,而每个Segment维护一个HashEntry,在操作HashEntry里的数据时只需给对应的Segment加速,所以在高并发场景下的性能比较好。
现在先来简单了解一下它的组成:

成员


//Segment内部HashEntry默认的初始化容量
    static final int DEFAULT_INITIAL_CAPACITY = 16;
    //扩容时用到的加载因子
    static final float DEFAULT_LOAD_FACTOR = 0.75f;
    //默认并发数,就是Segment的数量
    static final int DEFAULT_CONCURRENCY_LEVEL = 16;
    //segment内部 hashEntry的最大长度
    static final int MAXIMUM_CAPACITY = 1 << 30;
    //每个分段最小长度
    static final int MIN_SEGMENT_TABLE_CAPACITY = 2;
    //分段最大容量
    static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
    //默认自旋次数。超过这个次数就加锁
    static final int RETRIES_BEFORE_LOCK = 2;
    
    final int segmentMask;

   
    final int segmentShift;
	
	// segment数组
    final Segment<K,V>[] segments;

    transient Set<K> keySet;
    transient Set<Map.Entry<K,V>> entrySet;
    transient Collection<V> values;

Segment

//hashentey实际保存数据的地方
 transient volatile HashEntry<K,V>[] table;
//保持的数量
        transient int count;
     //修改的次数
        transient int modCount;
	//扩容 rehash阈值
        transient int threshold;
        //加载因子
        final float loadFactor;

注意segment其实就是一个锁,它继承自ReentrantLock,在执行某些操作时时互斥的。

HashEntry

HashEntry时ConcurrentHashMap下粒度最小的数据结构:


       final int hash;
        final K key;
        volatile V value;
        volatile HashEntry<K,V> next;

源码深入

创建

//其他构造器最终都调用这个构造器
 @SuppressWarnings("unchecked")
    public ConcurrentHashMap(int initialCapacity,
                             float loadFactor, int concurrencyLevel) {
        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
            throw new IllegalArgumentException();
        if (concurrencyLevel > MAX_SEGMENTS)
            concurrencyLevel = MAX_SEGMENTS;
        // Find power-of-two sizes best matching arguments
        int sshift = 0;
        int ssize = 1;
        //保证ssize是2的次数,方便后面的位运算,只要移位就行
        while (ssize < concurrencyLevel) {
            ++sshift;
            ssize <<= 1;
        }
        this.segmentShift = 32 - sshift;
        this.segmentMask = ssize - 1;
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        int c = initialCapacity / ssize;
        if (c * ssize < initialCapacity)
            ++c;
        int cap = MIN_SEGMENT_TABLE_CAPACITY;
        //cap 跟ssize同理
        while (cap < c)
            cap <<= 1;
        // create segments and segments[0]
//在初始化时至初始化第一个segment,后面等用到再初始化
        Segment<K,V> s0 =
            new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
                             (HashEntry<K,V>[])new HashEntry[cap]);
        Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];
        UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
        this.segments = ss;
    }

    
    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
        this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
    }

  
    public ConcurrentHashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
    }


    public ConcurrentHashMap() {
        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
    }

 
    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
        this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
                      DEFAULT_INITIAL_CAPACITY),
             DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
        putAll(m);
    }

put

 public V put(K key, V value) {
        Segment<K,V> s;
        if (value == null)
            throw new NullPointerException();
        int hash = hash(key);
        //hash得到segment的数组索引
        int j = (hash >>> segmentShift) & segmentMask;
        if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck
             (segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegment
             //如果还没有就初始化
            s = ensureSegment(j);
            //调用segment的put方法
        return s.put(key, hash, value, false);
    }

下面看下segment里的put方法
 final V put(K key, int hash, V value, boolean onlyIfAbsent) {
 //先尝试上锁,上锁成功 node为null,否则进scanAndLockForPut 扫描预热并上锁返回对应的HashEntry
            HashEntry<K,V> node = tryLock() ? null :
                scanAndLockForPut(key, hash, value);
            V oldValue;
            try {
                HashEntry<K,V>[] tab = table;
                int index = (tab.length - 1) & hash;
                HashEntry<K,V> first = entryAt(tab, index);
                //拿到对应链表的第一个HashEntry
                for (HashEntry<K,V> e = first;;) {
                //取出来的结果不空
                    if (e != null) {
                        K k;
			//如果找到对应的key,且hash一样
                        if ((k = e.key) == key ||
                            (e.hash == hash && key.equals(k))) {
                            oldValue = e.value;
                            //如果时onlyIfAbsent,就不设置值,只返回旧值,否则要覆盖的
                            if (!onlyIfAbsent) {
                                e.value = value;
                                ++modCount;
                            }
                            //找到就break
                            break;
                        }
                        //没找到就继续找下一个
                        e = e.next;
                    }
                    else {
                
                //吧新节点放在第一个节点位置
                        if (node != null)
                            node.setNext(first);
                        else
                            node = new HashEntry<K,V>(hash, key, value, first);
                        int c = count + 1;
                        //容量超过阈值就要扩容
                        if (c > threshold && tab.length < MAXIMUM_CAPACITY)
                            rehash(node);
                        else
                            setEntryAt(tab, index, node);
                        ++modCount;
                        count = c;
                        oldValue = null;
                        break;
                    }
                }
            } finally {
                unlock();
            }
            return oldValue;
        }
来看下 scanAndLockForPut ,这个方法主要时在等待的过程中预热一下数据

 private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) {
            HashEntry<K,V> first = entryForHash(this, hash);
            HashEntry<K,V> e = first;
            HashEntry<K,V> node = null;
            int retries = -1; // negative while locating node
            //尝试获取锁失败就循环
            while (!tryLock()) {
                HashEntry<K,V> f; // to recheck first below
                if (retries < 0) {
                    if (e == null) {
                    //如果node是空就初始化
                        if (node == null) // speculatively create node
                            node = new HashEntry<K,V>(hash, key, value, null);
                        retries = 0;
                    }
                    //找到key就跳出去
                    else if (key.equals(e.key))
                        retries = 0;
                    else
                    //找不到就往后找
                        e = e.next;
                }
                //自旋超过一定次数就阻塞上锁
                else if (++retries > MAX_SCAN_RETRIES) {
                    lock();
                    break;
                }
                //在自旋过程中,可以已经被其他线程修改,所以要重置下
                else if ((retries & 1) == 0 &&
                         (f = entryForHash(this, hash)) != first) {
                    e = first = f; // re-traverse if entry changed
                    retries = -1;
                }
            }
            return node;
        }

rehash

在put的过程中,如果size超过阈值则会rehash,来看下rehash的源码实现:

private void rehash(HashEntry<K,V> node) {
            HashEntry<K,V>[] oldTable = table;
            int oldCapacity = oldTable.length;
            int newCapacity = oldCapacity << 1;
            threshold = (int)(newCapacity * loadFactor);
            HashEntry<K,V>[] newTable =
                (HashEntry<K,V>[]) new HashEntry[newCapacity];
            int sizeMask = newCapacity - 1;
            for (int i = 0; i < oldCapacity ; i++) {
                HashEntry<K,V> e = oldTable[i];
                if (e != null) {
                    HashEntry<K,V> next = e.next;
                    int idx = e.hash & sizeMask;
                    if (next == null)   //  Single node on list
                        newTable[idx] = e; //纳闷点 1
                    else { // Reuse consecutive sequence at same slot
                        HashEntry<K,V> lastRun = e;
                        int lastIdx = idx;
                        for (HashEntry<K,V> last = next;
                             last != null;
                             last = last.next) {
                            int k = last.hash & sizeMask;
                            if (k != lastIdx) {
                                lastIdx = k;
                                lastRun = last;
                            }
                        }
                        //rehash需要遍历所有hashentery的数据重新分配到指定indexde hashentry下,
                        //这里做了一个效率的优化,找到一个节点,其之后的数据都hash到一个 hashentery上,就
                        //直接把这一串放到那个对应的hashentry里
                        newTable[lastIdx] = lastRun;//纳闷点2
                        // Clone remaining nodes
                      //在这个点之前的hash到对应的entry存起来
                        for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
                            V v = p.value;
                            int h = p.hash;
                            int k = h & sizeMask;
                            HashEntry<K,V> n = newTable[k];
                            newTable[k] = new HashEntry<K,V>(h, p.key, v, n);
                        }
                    }
                }
            }
            int nodeIndex = node.hash & sizeMask; // add the new node
            node.setNext(newTable[nodeIndex]);
            newTable[nodeIndex] = node;
            table = newTable;
        }

刚开始对 newTable[idx] = e;和newTable[lastIdx] = lastRun;比较纳闷,起初认为后续满足这个条件的会覆盖原先的数据。
后来看了其他博客了解到,因为扩容是扩容为原先的2倍,所以原先index上的数据 要么还在这里,要么就是2*index,所以不存在其他HashEntry覆盖原先的情况。

ensureSegment

这是put时 初始化 还未初始化的segment
  private Segment<K,V> ensureSegment(int k) {
        final Segment<K,V>[] ss = this.segments;
        long u = (k << SSHIFT) + SBASE; // raw offset
        Segment<K,V> seg;
        if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) {
            Segment<K,V> proto = ss[0]; // use segment 0 as prototype
            int cap = proto.table.length;
            float lf = proto.loadFactor;
            int threshold = (int)(cap * lf);
            HashEntry<K,V>[] tab = (HashEntry<K,V>[])new HashEntry[cap];
            if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
                == null) { // recheck
                //根据第一个segment的参数创建一个新的segment
                Segment<K,V> s = new Segment<K,V>(lf, threshold, tab);
                //再设置前判断是否有其他线程已经优先初始化
                while ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
                       == null) {
                    if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s))
                        break;
                }
            }
        }
        return seg;
    }

get

GET方法一目了然
 public V get(Object key) {
        Segment<K,V> s; // manually integrate access methods to reduce overhead
        HashEntry<K,V>[] tab;
        int h = hash(key);
        long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
        if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
            (tab = s.table) != null) {
            for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
                     (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
                 e != null; e = e.next) {
                K k;
                if ((k = e.key) == key || (e.hash == h && key.equals(k)))
                    return e.value;
            }
        }
        return null;
    }

size

//在查看size的时候,需要关注到每一个segment,如果直接全部上锁,对性能不好,
//因此采用的方式时自旋两次,判断两次的modCount是否一致,如果一致说明没有修改可以返回size
//如果两次的modCount不一致,则需要加锁
 public int size() {
        // Try a few times to get accurate count. On failure due to
        // continuous async changes in table, resort to locking.
        final Segment<K,V>[] segments = this.segments;
        int size;
        boolean overflow; // true if size overflows 32 bits
        long sum;         // sum of modCounts
        long last = 0L;   // previous sum
        int retries = -1; // first iteration isn't retry
        try {
            for (;;) {
                if (retries++ == RETRIES_BEFORE_LOCK) {
                    for (int j = 0; j < segments.length; ++j)
                        ensureSegment(j).lock(); // force creation
                }
                sum = 0L;
                size = 0;
                overflow = false;
                for (int j = 0; j < segments.length; ++j) {
                    Segment<K,V> seg = segmentAt(segments, j);
                    if (seg != null) {
                        sum += seg.modCount;
                        int c = seg.count;
                        if (c < 0 || (size += c) < 0)
                            overflow = true;
                    }
                }
                if (sum == last)
                    break;
                last = sum;
            }
        } finally {
            if (retries > RETRIES_BEFORE_LOCK) {
                for (int j = 0; j < segments.length; ++j)
                    segmentAt(segments, j).unlock();
            }
        }
        return overflow ? Integer.MAX_VALUE : size;
    }

区别

1.7与1.8的差异如下,1.8的代码比较多,就不贴了。
感兴趣的自己看代码
1、1.7 使用segment分段锁,每个锁维护一个Node数组
1.8 给Node加锁,锁粒度更小,并发性能更佳,进一步减少了并发冲突
2、1.7使用的是 segment+数组+链表
1.8 使用的是数组+链表+红黑树,在哈希冲突较多的情况下,有较好的查询性能

猜你喜欢

转载自blog.csdn.net/qq_28605513/article/details/84716832