基于惯性和偏心的描述符矩(Moment of inertia and eccentricity based descriptors)

在本教程中,我们将学习如何使用pcl::MomentOfInertiaEstimation类来获取基于偏心率惯性矩的描述符。这个类还允许提取云的轴对齐和定向的边界框。但请记住,提取的OBB不是最小可能的边界框。

#理论引入
特征提取方法的思想如下。首先计算点云的协方差矩阵,并提取其特征值和向量。你可以认为合成的特征向量是归一化的,总是形成右手坐标系(主特征向量代表X轴,次向量代表Z轴)。在下一步迭代过程发生。在每次迭代中,主要特征向量被旋转。旋转顺序总是相同的,并围绕其他特征向量执行,这为点云的旋转提供了不变性。今后,我们将把这个旋转的主矢量作为当前轴。
_images / eigen_vectors.png
计算每个当前轴的转动惯量。 此外,目前的轴也用于偏心计算。 出于这个原因,目前矢量被视为平面的法向量,并将输入云投影到其上。 之后,计算得到的投影的偏心率。
_images/projected_cloud.png
实现类还提供获取AABB和OBB的方法。面向对象的边界框沿着特征向量计算为AABB。
#代码
首先,您将需要本教程的点云。 这是截图中的一个。接下来,您需要做的是在您喜欢的任何编辑器中创建一个moment_of_inertia.cpp文件,并在其中复制下面的代码:

#include <pcl/features/moment_of_inertia_estimation.h>
#include <vector>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/visualization/cloud_viewer.h>
#include <boost/thread/thread.hpp>

int main (int argc, char** argv)
{
  if (argc != 2)
    return (0);

  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ> ());
  if (pcl::io::loadPCDFile (argv[1], *cloud) == -1)
    return (-1);

  pcl::MomentOfInertiaEstimation <pcl::PointXYZ> feature_extractor;
  feature_extractor.setInputCloud (cloud);
  feature_extractor.compute ();

  std::vector <float> moment_of_inertia;
  std::vector <float> eccentricity;
  pcl::PointXYZ min_point_AABB;
  pcl::PointXYZ max_point_AABB;
  pcl::PointXYZ min_point_OBB;
  pcl::PointXYZ max_point_OBB;
  pcl::PointXYZ position_OBB;
  Eigen::Matrix3f rotational_matrix_OBB;
  float major_value, middle_value, minor_value;
  Eigen::Vector3f major_vector, middle_vector, minor_vector;
  Eigen::Vector3f mass_center;

  feature_extractor.getMomentOfInertia (moment_of_inertia);
  feature_extractor.getEccentricity (eccentricity);
  feature_extractor.getAABB (min_point_AABB, max_point_AABB);
  feature_extractor.getOBB (min_point_OBB, max_point_OBB, position_OBB, rotational_matrix_OBB);
  feature_extractor.getEigenValues (major_value, middle_value, minor_value);
  feature_extractor.getEigenVectors (major_vector, middle_vector, minor_vector);
  feature_extractor.getMassCenter (mass_center);

  boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer (new pcl::visualization::PCLVisualizer ("3D Viewer"));
  viewer->setBackgroundColor (0, 0, 0);
  viewer->addCoordinateSystem (1.0);
  viewer->initCameraParameters ();
  viewer->addPointCloud<pcl::PointXYZ> (cloud, "sample cloud");
  viewer->addCube (min_point_AABB.x, max_point_AABB.x, min_point_AABB.y, max_point_AABB.y, min_point_AABB.z, max_point_AABB.z, 1.0, 1.0, 0.0, "AABB");

  Eigen::Vector3f position (position_OBB.x, position_OBB.y, position_OBB.z);
  Eigen::Quaternionf quat (rotational_matrix_OBB);
  viewer->addCube (position, quat, max_point_OBB.x - min_point_OBB.x, max_point_OBB.y - min_point_OBB.y, max_point_OBB.z - min_point_OBB.z, "OBB");

  pcl::PointXYZ center (mass_center (0), mass_center (1), mass_center (2));
  pcl::PointXYZ x_axis (major_vector (0) + mass_center (0), major_vector (1) + mass_center (1), major_vector (2) + mass_center (2));
  pcl::PointXYZ y_axis (middle_vector (0) + mass_center (0), middle_vector (1) + mass_center (1), middle_vector (2) + mass_center (2));
  pcl::PointXYZ z_axis (minor_vector (0) + mass_center (0), minor_vector (1) + mass_center (1), minor_vector (2) + mass_center (2));
  viewer->addLine (center, x_axis, 1.0f, 0.0f, 0.0f, "major eigen vector");
  viewer->addLine (center, y_axis, 0.0f, 1.0f, 0.0f, "middle eigen vector");
  viewer->addLine (center, z_axis, 0.0f, 0.0f, 1.0f, "minor eigen vector");

  //Eigen::Vector3f p1 (min_point_OBB.x, min_point_OBB.y, min_point_OBB.z);
  //Eigen::Vector3f p2 (min_point_OBB.x, min_point_OBB.y, max_point_OBB.z);
  //Eigen::Vector3f p3 (max_point_OBB.x, min_point_OBB.y, max_point_OBB.z);
  //Eigen::Vector3f p4 (max_point_OBB.x, min_point_OBB.y, min_point_OBB.z);
  //Eigen::Vector3f p5 (min_point_OBB.x, max_point_OBB.y, min_point_OBB.z);
  //Eigen::Vector3f p6 (min_point_OBB.x, max_point_OBB.y, max_point_OBB.z);
  //Eigen::Vector3f p7 (max_point_OBB.x, max_point_OBB.y, max_point_OBB.z);
  //Eigen::Vector3f p8 (max_point_OBB.x, max_point_OBB.y, min_point_OBB.z);

  //p1 = rotational_matrix_OBB * p1 + position;
  //p2 = rotational_matrix_OBB * p2 + position;
  //p3 = rotational_matrix_OBB * p3 + position;
  //p4 = rotational_matrix_OBB * p4 + position;
  //p5 = rotational_matrix_OBB * p5 + position;
  //p6 = rotational_matrix_OBB * p6 + position;
  //p7 = rotational_matrix_OBB * p7 + position;
  //p8 = rotational_matrix_OBB * p8 + position;

  //pcl::PointXYZ pt1 (p1 (0), p1 (1), p1 (2));
  //pcl::PointXYZ pt2 (p2 (0), p2 (1), p2 (2));
  //pcl::PointXYZ pt3 (p3 (0), p3 (1), p3 (2));
  //pcl::PointXYZ pt4 (p4 (0), p4 (1), p4 (2));
  //pcl::PointXYZ pt5 (p5 (0), p5 (1), p5 (2));
  //pcl::PointXYZ pt6 (p6 (0), p6 (1), p6 (2));
  //pcl::PointXYZ pt7 (p7 (0), p7 (1), p7 (2));
  //pcl::PointXYZ pt8 (p8 (0), p8 (1), p8 (2));

  //viewer->addLine (pt1, pt2, 1.0, 0.0, 0.0, "1 edge");
  //viewer->addLine (pt1, pt4, 1.0, 0.0, 0.0, "2 edge");
  //viewer->addLine (pt1, pt5, 1.0, 0.0, 0.0, "3 edge");
  //viewer->addLine (pt5, pt6, 1.0, 0.0, 0.0, "4 edge");
  //viewer->addLine (pt5, pt8, 1.0, 0.0, 0.0, "5 edge");
  //viewer->addLine (pt2, pt6, 1.0, 0.0, 0.0, "6 edge");
  //viewer->addLine (pt6, pt7, 1.0, 0.0, 0.0, "7 edge");
  //viewer->addLine (pt7, pt8, 1.0, 0.0, 0.0, "8 edge");
  //viewer->addLine (pt2, pt3, 1.0, 0.0, 0.0, "9 edge");
  //viewer->addLine (pt4, pt8, 1.0, 0.0, 0.0, "10 edge");
  //viewer->addLine (pt3, pt4, 1.0, 0.0, 0.0, "11 edge");
  //viewer->addLine (pt3, pt7, 1.0, 0.0, 0.0, "12 edge");

  while(!viewer->wasStopped())
  {
    viewer->spinOnce (100);
    boost::this_thread::sleep (boost::posix_time::microseconds (100000));
  }

  return (0);
}

#说明
现在我们来研究一下这段代码的目的是什么。前几行将被省略,因为它们是显而易见的。

  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ> ());
  if (pcl::io::loadPCDFile (argv[1], *cloud) == -1)
    return (-1);

这些行只是从.pcd文件加载云

  pcl::MomentOfInertiaEstimation <pcl::PointXYZ> feature_extractor;
  feature_extractor.setInputCloud (cloud);
  feature_extractor.compute ();

这里是pcl::MomentOfInertiaEstimation类的实例化发生的地方。紧接着,我们设置输入云,并开始计算过程,这很容易。

  std::vector <float> moment_of_inertia;
  std::vector <float> eccentricity;
  pcl::PointXYZ min_point_AABB;
  pcl::PointXYZ max_point_AABB;
  pcl::PointXYZ min_point_OBB;
  pcl::PointXYZ max_point_OBB;
  pcl::PointXYZ position_OBB;
  Eigen::Matrix3f rotational_matrix_OBB;
  float major_value, middle_value, minor_value;
  Eigen::Vector3f major_vector, middle_vector, minor_vector;
  Eigen::Vector3f mass_center;

这是我们声明存储描述符和边界框所需的所有必要变量。

  feature_extractor.getMomentOfInertia (moment_of_inertia);
  feature_extractor.getEccentricity (eccentricity);
  feature_extractor.getAABB (min_point_AABB, max_point_AABB);
  feature_extractor.getOBB (min_point_OBB, max_point_OBB, position_OBB, rotational_matrix_OBB);
  feature_extractor.getEigenValues (major_value, middle_value, minor_value);
  feature_extractor.getEigenVectors (major_vector, middle_vector, minor_vector);
  feature_extractor.getMassCenter (mass_center);

这些行显示如何访问计算的描述符和其他功能。

  boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer (new pcl::visualization::PCLVisualizer ("3D Viewer"));
  viewer->setBackgroundColor (0, 0, 0);
  viewer->addCoordinateSystem (1.0);
  viewer->initCameraParameters ();
  viewer->addPointCloud<pcl::PointXYZ> (cloud, "sample cloud");
  viewer->addCube (min_point_AABB.x, max_point_AABB.x, min_point_AABB.y, max_point_AABB.y, min_point_AABB.z, max_point_AABB.z, 1.0, 1.0, 0.0, "AABB");

这些行简单地为结果可视化创建PCLVisualizer类的实例。在这里,我们也添加了云和AABB的可视化。

  Eigen::Vector3f position (position_OBB.x, position_OBB.y, position_OBB.z);
  Eigen::Quaternionf quat (rotational_matrix_OBB);
  viewer->addCube (position, quat, max_point_OBB.x - min_point_OBB.x, max_point_OBB.y - min_point_OBB.y, max_point_OBB.z - min_point_OBB.z, "OBB");

OBB的可视化稍微复杂一些。所以在这里我们根据旋转矩阵创建一个四元数,设置OBB的位置并将其传递给可视化。

  pcl::PointXYZ center (mass_center (0), mass_center (1), mass_center (2));
  pcl::PointXYZ x_axis (major_vector (0) + mass_center (0), major_vector (1) + mass_center (1), major_vector (2) + mass_center (2));
  pcl::PointXYZ y_axis (middle_vector (0) + mass_center (0), middle_vector (1) + mass_center (1), middle_vector (2) + mass_center (2));
  pcl::PointXYZ z_axis (minor_vector (0) + mass_center (0), minor_vector (1) + mass_center (1), minor_vector (2) + mass_center (2));
  viewer->addLine (center, x_axis, 1.0f, 0.0f, 0.0f, "major eigen vector");
  viewer->addLine (center, y_axis, 0.0f, 1.0f, 0.0f, "middle eigen vector");
  viewer->addLine (center, z_axis, 0.0f, 0.0f, 1.0f, "minor eigen vector");

这些行负责特征向量可视化。

  //Eigen::Vector3f p1 (min_point_OBB.x, min_point_OBB.y, min_point_OBB.z);
  //Eigen::Vector3f p2 (min_point_OBB.x, min_point_OBB.y, max_point_OBB.z);
  //Eigen::Vector3f p3 (max_point_OBB.x, min_point_OBB.y, max_point_OBB.z);
  //Eigen::Vector3f p4 (max_point_OBB.x, min_point_OBB.y, min_point_OBB.z);
  //Eigen::Vector3f p5 (min_point_OBB.x, max_point_OBB.y, min_point_OBB.z);
  //Eigen::Vector3f p6 (min_point_OBB.x, max_point_OBB.y, max_point_OBB.z);
  //Eigen::Vector3f p7 (max_point_OBB.x, max_point_OBB.y, max_point_OBB.z);
  //Eigen::Vector3f p8 (max_point_OBB.x, max_point_OBB.y, min_point_OBB.z);

  //p1 = rotational_matrix_OBB * p1 + position;
  //p2 = rotational_matrix_OBB * p2 + position;
  //p3 = rotational_matrix_OBB * p3 + position;
  //p4 = rotational_matrix_OBB * p4 + position;
  //p5 = rotational_matrix_OBB * p5 + position;
  //p6 = rotational_matrix_OBB * p6 + position;
  //p7 = rotational_matrix_OBB * p7 + position;
  //p8 = rotational_matrix_OBB * p8 + position;

  //pcl::PointXYZ pt1 (p1 (0), p1 (1), p1 (2));
  //pcl::PointXYZ pt2 (p2 (0), p2 (1), p2 (2));
  //pcl::PointXYZ pt3 (p3 (0), p3 (1), p3 (2));
  //pcl::PointXYZ pt4 (p4 (0), p4 (1), p4 (2));
  //pcl::PointXYZ pt5 (p5 (0), p5 (1), p5 (2));
  //pcl::PointXYZ pt6 (p6 (0), p6 (1), p6 (2));
  //pcl::PointXYZ pt7 (p7 (0), p7 (1), p7 (2));
  //pcl::PointXYZ pt8 (p8 (0), p8 (1), p8 (2));

  //viewer->addLine (pt1, pt2, 1.0, 0.0, 0.0, "1 edge");
  //viewer->addLine (pt1, pt4, 1.0, 0.0, 0.0, "2 edge");
  //viewer->addLine (pt1, pt5, 1.0, 0.0, 0.0, "3 edge");
  //viewer->addLine (pt5, pt6, 1.0, 0.0, 0.0, "4 edge");
  //viewer->addLine (pt5, pt8, 1.0, 0.0, 0.0, "5 edge");
  //viewer->addLine (pt2, pt6, 1.0, 0.0, 0.0, "6 edge");
  //viewer->addLine (pt6, pt7, 1.0, 0.0, 0.0, "7 edge");
  //viewer->addLine (pt7, pt8, 1.0, 0.0, 0.0, "8 edge");
  //viewer->addLine (pt2, pt3, 1.0, 0.0, 0.0, "9 edge");
  //viewer->addLine (pt4, pt8, 1.0, 0.0, 0.0, "10 edge");
  //viewer->addLine (pt3, pt4, 1.0, 0.0, 0.0, "11 edge");
  //viewer->addLine (pt3, pt7, 1.0, 0.0, 0.0, "12 edge");

这大量的代码显示了如何使用面向边界框。请注意,您需要旋转OBB的每个顶点。这个代码和PCLVisualizer::addCube()方法一样。它的唯一目的是显示如何使用OBB,如果你没有PCLVisualizer::addCube()这样的可用方法。
剩下的几行直接启动可视化过程。
#编译和运行程序
将下面的行添加到您的CMakeLists.txt文件中:

cmake_minimum_required(VERSION 2.8 FATAL_ERROR)

project(moment_of_inertia)

find_package(PCL 1.8 REQUIRED)

include_directories(${PCL_INCLUDE_DIRS})
link_directories(${PCL_LIBRARY_DIRS})
add_definitions(${PCL_DEFINITIONS})

add_executable (moment_of_inertia moment_of_inertia.cpp)
target_link_libraries (moment_of_inertia ${PCL_LIBRARIES})

制作好可执行文件之后,就可以运行它了。简单地做:

./moment_of_inertia lamppost.pcd

你应该看到类似于这个图像的东西。这里AABB是黄色的,OBB是红色的。你也可以看到特征向量。
_images / moment_of_inertia.png

Moment of inertia and eccentricity based descriptors

猜你喜欢

转载自blog.csdn.net/RuoQiQingCheDi/article/details/83959224
今日推荐