tensorflow(十)生成式对抗网络(GAN)下篇----tensorflow实现

本文接上一篇博文:

一、程序代码

程序主要实现上篇文章中所提到的随机噪声拟合高斯分布的过程,话不多说,直接上代码:

    #引入必要的包
    import argparse
    import numpy as np
    from scipy.stats import norm
    import tensorflow as tf
    import matplotlib.pyplot as plt
    import seaborn as sns
    sns.set(color_codes=True)  
    #设置种子,用于随机初始化
    seed = 42
    np.random.seed(seed)
    tf.set_random_seed(seed)
    #定义真实的数据分布,这里为高斯分布
    class DataDistribution(object):
        def __init__(self):
            #高斯分布参数
            #均值为4
            self.mu = 4
            #标准差为0.5
            self.sigma = 0.5
        def sample(self, N):
            samples = np.random.normal(self.mu, self.sigma, N)
            samples.sort()
            return samples
    #随机初始化一个分布,做为G网络的输入
    class GeneratorDistribution(object):
        def __init__(self, range):
            self.range = range
        def sample(self, N):
            return np.linspace(-self.range, self.range, N) + \
                np.random.random(N) * 0.01
    #定义线性运算函数,其中参数output_dim=h_dim*2=8
    def linear(input, output_dim, scope=None, stddev=1.0):
        #定义一个随机初始化
        norm = tf.random_normal_initializer(stddev=stddev)
        #b初始化为0
        const = tf.constant_initializer(0.0)
        with tf.variable_scope(scope or 'linear'):
            #声明w的shape,输入为(12,1)*w,故w为(1,8),w的初始化方式为高斯初始化
            w = tf.get_variable('w', [input.get_shape()[1], output_dim], initializer=norm)
            #b初始化为常量
            b = tf.get_variable('b', [output_dim], initializer=const)
            #执行线性运算
            return tf.matmul(input, w) + b
    #
    def generator(input, h_dim):
        h0 = tf.nn.softplus(linear(input, h_dim, 'g0'))
        h1 = linear(h0, 1, 'g1')
        return h1
    #初始化w和b的函数,其中h0,h1,h2,h3为层,将mlp_hidden_size=4传给h_dim
    def discriminator(input, h_dim):
        #linear 控制w和b的初始化,这里linear函数的第二个参数为4*2=8
        #第一层
        h0 = tf.tanh(linear(input, h_dim * 2, 'd0'))
        #第二层输出,隐藏层神经元个数还是为8
        h1 = tf.tanh(linear(h0, h_dim * 2, 'd1'))   
        #h2为第三层输出值
        h2 = tf.tanh(linear(h1, h_dim * 2, scope='d2'))
        #最终的输出值
        h3 = tf.sigmoid(linear(h2, 1, scope='d3'))
        return h3
    #优化器 采用学习率衰减的方法
    def optimizer(loss, var_list, initial_learning_rate):
        decay = 0.95
        num_decay_steps = 150
        batch = tf.Variable(0)
        #调用学习率衰减的函数
        learning_rate = tf.train.exponential_decay(
            initial_learning_rate,
            batch,
            num_decay_steps,
            decay,
            staircase=True
        )
        #梯度下降求解
        optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(
            loss,
            global_step=batch,
            var_list=var_list
        )
        #返回
        return optimizer
    #构造模型
    class GAN(object):
        def __init__(self, data, gen, num_steps, batch_size, log_every):
            self.data = data
            self.gen = gen
            self.num_steps = num_steps
            self.batch_size = batch_size
            self.log_every = log_every
            #隐藏层神经元个数
            self.mlp_hidden_size = 4
            #学习率
            self.learning_rate = 0.03
            #通过placeholder格式来创造模型
            self._create_model()
        def _create_model(self):
            #创建一个名叫D_pre的域,先构造一个D_pre网络,用来训练出真正D网络初始化网络所需要的参数
            with tf.variable_scope('D_pre'):
                #输入的shape为(12,1),一个batch一个batch的训练,
                #每个batch的大小为12,要训练的数据为1维的点
                self.pre_input = tf.placeholder(tf.float32, shape=(self.batch_size, 1))
                self.pre_labels = tf.placeholder(tf.float32, shape=(self.batch_size, 1))
                #调用discriminator来初始化w和b参数,其中self.mlp_hidden_size=4,为discriminator函数的第二个参数
                D_pre = discriminator(self.pre_input, self.mlp_hidden_size)
                #预测值和label之间的差异
                self.pre_loss = tf.reduce_mean(tf.square(D_pre - self.pre_labels))
                #定义优化器求解
                self.pre_opt = optimizer(self.pre_loss, None, self.learning_rate)
            # This defines the generator network - it takes samples from a noise
            # distribution as input, and passes them through an MLP.
            #真正的G网络
            with tf.variable_scope('Gen'):
                self.z = tf.placeholder(tf.float32, shape=(self.batch_size, 1))
                #生产网络只有两层
                self.G = generator(self.z, self.mlp_hidden_size)
            # The discriminator tries to tell the difference between samples from the
            # true data distribution (self.x) and the generated samples (self.z).
            #
            # Here we create two copies of the discriminator network (that share parameters),
            # as you cannot use the same network with different inputs in TensorFlow.
            #D网络
            with tf.variable_scope('Disc') as scope:
                self.x = tf.placeholder(tf.float32, shape=(self.batch_size, 1))
                #构造D1网络,真实的数据
                self.D1 = discriminator(self.x, self.mlp_hidden_size)
                #重新使用一下变量,不用重新定义
                scope.reuse_variables()
                #D2,生成的数据
                self.D2 = discriminator(self.G, self.mlp_hidden_size)
            # Define the loss for discriminator and generator networks (see the original
            # paper for details), and create optimizers for both
            #定义判别网络损失函数
            self.loss_d = tf.reduce_mean(-tf.log(self.D1) - tf.log(1 - self.D2))
            #定义生成网络损失函数
            self.loss_g = tf.reduce_mean(-tf.log(self.D2))
            self.d_pre_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='D_pre')
            self.d_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='Disc')
            self.g_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='Gan')
            #优化,得到两组参数
            self.opt_d = optimizer(self.loss_d, self.d_params, self.learning_rate)
            self.opt_g = optimizer(self.loss_g, self.g_params, self.learning_rate)
        def train(self):
            with tf.Session() as session:
                tf.global_variables_initializer().run()
                # pretraining discriminator
                #先训练D_pre网络
                num_pretrain_steps = 1000
                for step in range(num_pretrain_steps):
                    #随机生成数据
                    d = (np.random.random(self.batch_size) - 0.5) * 10.0
                    labels = norm.pdf(d, loc=self.data.mu, scale=self.data.sigma)
                    pretrain_loss, _ = session.run([self.pre_loss, self.pre_opt], {
                        self.pre_input: np.reshape(d, (self.batch_size, 1)),
                        self.pre_labels: np.reshape(labels, (self.batch_size, 1))
                    })
                #拿出预训练好的数据
                self.weightsD = session.run(self.d_pre_params)
                # copy weights from pre-training over to new D network
                for i, v in enumerate(self.d_params):
                    session.run(v.assign(self.weightsD[i]))
                #训练真正的网络
                for step in range(self.num_steps):
                    # update discriminator
                    x = self.data.sample(self.batch_size)
                    #z是一个随机生成的噪音
                    z = self.gen.sample(self.batch_size)
                    #优化判别网络
                    loss_d, _ = session.run([self.loss_d, self.opt_d], {
                        self.x: np.reshape(x, (self.batch_size, 1)),
                        self.z: np.reshape(z, (self.batch_size, 1))
                    })
                    # update generator
                    #随机初始化
                    z = self.gen.sample(self.batch_size)
                    #迭代优化
                    loss_g, _ = session.run([self.loss_g, self.opt_g], {
                        self.z: np.reshape(z, (self.batch_size, 1))
                    })
                    #打印
                    if step % self.log_every == 0:
                        print('{}: {}\t{}'.format(step, loss_d, loss_g))                
                    #画图
                    if step % 100 == 0 or step==0 or step == self.num_steps -1 :
                        self._plot_distributions(session)
        def _samples(self, session, num_points=10000, num_bins=100):
            xs = np.linspace(-self.gen.range, self.gen.range, num_points)
            bins = np.linspace(-self.gen.range, self.gen.range, num_bins)
            # data distribution
            d = self.data.sample(num_points)
            pd, _ = np.histogram(d, bins=bins, density=True)
            # generated samples
            zs = np.linspace(-self.gen.range, self.gen.range, num_points)
            g = np.zeros((num_points, 1))
            for i in range(num_points // self.batch_size):
                g[self.batch_size * i:self.batch_size * (i + 1)] = session.run(self.G, {
                    self.z: np.reshape(
                        zs[self.batch_size * i:self.batch_size * (i + 1)],
                        (self.batch_size, 1)
                    )
                })
            pg, _ = np.histogram(g, bins=bins, density=True)
            return pd, pg
        def _plot_distributions(self, session):
            pd, pg = self._samples(session)
            p_x = np.linspace(-self.gen.range, self.gen.range, len(pd))
            f, ax = plt.subplots(1)
            ax.set_ylim(0, 1)
            plt.plot(p_x, pd, label='real data')
            plt.plot(p_x, pg, label='generated data')
            plt.title('1D Generative Adversarial Network')
            plt.xlabel('Data values')
            plt.ylabel('Probability density')
            plt.legend()
            plt.show()
    def main(args):
        model = GAN(
            #定义真实数据的分布
            DataDistribution(),
            #创造一些噪音点,用来传入G函数
            GeneratorDistribution(range=8),
            #迭代次数
            args.num_steps,
            #一次迭代12个点的数据
            args.batch_size,
            #隔多少次打印当前loss
            args.log_every,
        )
        model.train()
    def parse_args():
        parser = argparse.ArgumentParser()
        parser.add_argument('--num-steps', type=int, default=3000,
                            help='the number of training steps to take')
        parser.add_argument('--batch-size', type=int, default=12,
                            help='the batch size')
        parser.add_argument('--log-every', type=int, default=10,
                            help='print loss after this many steps')
        return parser.parse_args()
    if __name__ == '__main__':
        main(parse_args())

二、程序运行结果

1、程序运行初始状态
这里写图片描述

其中左边为随机初始化的数据,右边为真实的呈高斯分布的数据。

2、程序迭代运行1200次后的状态
这里写图片描述
这里不知道为什么原因,程序没有正常的拟合真实的数据,将迭代次数增加之后,程序也没有太大的变化,D和G网络的两个Loss的变化都很小,这里还望大家帮忙找一找原因。可能和GAN网络容易训练跑偏的一些原因有关。

猜你喜欢

转载自blog.csdn.net/Missayaaa/article/details/80251890
今日推荐