数论 最大公约数 最小公倍数

版权声明:欢迎转载,但请标注来源 https://blog.csdn.net/qq_42686721/article/details/82730997

#最大公约数
之前,我们学过约数,这次,我们需要找到2个数 a , b a, b 的最大的公约数,我们设 d = g c d ( a , b ) d = gcd (a,b) a , b a,b 的最大公约数

所以有 d a d | a d b d | b ,设 a = k b + r a = kb + r ,其中k为整数
所以 r = a k b r = a - kb ,根据整除的性质,可得 d r d | r
故d也是r的公因数,若 g c d ( b , r ) = c gcd (b, r) = c ,则 d < = c d <= c

又有 c r c | r c b c | b a = k b + r a = kb + r ,所以 c a c | a
所以c是a、b的公约数,即 c < = d c <= d ,综上所以 c = d c = d

所以 g c d ( a , b ) = g c d ( b , a   m o d   b ) = g c d ( b   m o d   a , a ) gcd (a,b) = gcd (b,a \:mod \: b) ,同理也可证= gcd (b \: mod \: a, a)

###code

#include <iostream>
using namespace std;
int gcd1 (int a, int b) {
    return b ? gcd1(b, a % b) : a;
}
int gcd2 (int a,int b) {
    return a ? gcd2(b % a, a) : b;
}
int main () {
    int m,n;
    cin >> m >> n;
    cout << gcd1 (m,n) << " " << gcd2 (m,n);
}

#最小公倍数
a , b a, b 的最小公倍数为 L L ,最大公因数为 D D
所以有 L a L|a L b L|b
且有 a = D x a = Dx b = D y b = Dy (显然有 x , y x,y 互质)
故满足 L D , &MediumSpace; L x , &MediumSpace; L y L|D,\:L|x,\:L|y ,所以满足条件的最小的 L = D × x × y = a ÷ D × b L=D \times x \times y = a \div D \times b

其实这里可以使用唯一分解定理证明

a = p 1 a 1 × p 2 a 2 × . . . × p n a n a = p_{1}^{a_1} \times p_{2}^{a_2} \times ... \times p_{n}^{a_n}
b = p 1 b 1 × p 2 b 2 × . . . × p n b n b = p_{1}^{b_1} \times p_{2}^{b_2} \times ... \times p_{n}^{b_n}

则明显 D = g c d ( a , b ) = p 1 m i n ( a 1 , b 1 ) × p 2 m i n ( a 2 , b 2 ) × . . . × p n m i n ( a n , b n ) D = gcd(a,b) = p_{1}^{min(a_1,b_1)} \times p_{2}^{min(a_2,b_2)} \times ... \times p_{n}^{min(a_n,b_n)}

L = l c m ( a , b ) = p 1 m a x ( a 1 , b 1 ) × p 2 m a x ( a 2 , b 2 ) × . . . × p n m a x ( a n , b n ) L = lcm(a,b) = p_{1}^{max(a_1,b_1)} \times p_{2}^{max(a_2,b_2)} \times ... \times p_{n}^{max(a_n,b_n)}

可得 L = a ÷ D × b L=a \div D \times b

猜你喜欢

转载自blog.csdn.net/qq_42686721/article/details/82730997