Leetcode78.Subsets

这里复用了Leetcode77.Combination中的组合函数,寻找有限集的子集就是列出从0-n的所有组合
时间复杂度: O ( N e N ) O(Ne^N) (此界随N增大而渐进)
时间复杂度分析:
对大小为k的子集,有 C n k C^k_n 个,每个需要k步向数组内添加数字的操作
于是我们可以得出总操作数为:
F ( n ) = k = 0 n k C n k C n n k = C n k , F ( n ) = k = 0 [ n 2 ] n C n k F(n)=\sum^{n}_{k=0}kC^k_n,又因为C^{n-k}_n=C^k_n,有F(n)=\sum^{[\frac{n}{2}]}_{k=0}nC^k_n
C n k n k k ! ( k n 2 ) , F ( x ) i = 0 [ n 2 ] 1 i ! x i , e x = i = 0 1 i ! x i C^k_n≤\frac{n^k}{k!}(k≤\frac{n}{2}),即F(x)≤\sum^{[\frac{n}{2}]}_{i=0}\frac{1}{i!}x^i,又因为e^x=\sum^\infty_{i=0}\frac{1}{i!}x^i
所以对于足够大的n,有:
F ( n ) n e n , O ( n e n ) F(n)≤ne^n,所以时间复杂度为O(ne^n)
C++代码:

class Solution {
public:
	vector<vector<int>> result;
	vector<vector<int>> subsets(vector<int>& nums) {
		result.push_back({});
		for (int i = 1; i <= nums.size(); i++)
			comb(nums.size(), i, {}, nums);
		return result;
	}
	void comb(int n, int k, vector<int> ans,vector<int>& nums)
	{
		if (k > n)
			return;
		if (k == 0)
		{
			result.push_back(ans);
			return;
		}
		if (k == n)
		{
			for (int i = k; i > 0; i--)
				ans.push_back(nums[i - 1]);
			result.push_back(ans);
			return;
		}
		for (int i = n; i >= k; i--)
		{
			ans.push_back(nums[i - 1]);
			comb(i - 1, k - 1, ans,nums);
			ans.pop_back();
		}
	}
};

猜你喜欢

转载自blog.csdn.net/qq_42263831/article/details/82981028
今日推荐