【语义分割】FCN论文笔记

参考博客:https://blog.csdn.net/qq_36269513/article/details/80420363

论文全称:Fully Convolutional Networks for Semantic Segmentation

亮点:

    1、将全连接层(fc)修改为卷积层,成为全卷积(fully conv)网络。

    2、适应任意尺寸输入,输出等同输入尺寸大小,对每个像素进行分类

    3、采用上采样方法,即反卷积(deconv)层, 增大特征图尺寸。能够输出精细的结果。

    4、结合不同层结果的skip结构。同时确保鲁棒性和精确性。

模型过程:

     1、FCN将传统CNN中的全连接层转化成一个个的卷积层。如下图所示,在传统的CNN结构中,前5层是卷积层,第6层和第7       层分别是一个长度为4096的一维向量,第8层是长度为1000的一维向量,分别对应1000个类别的概率。FCN将这3层表示为        卷积层,卷积核的大小(通道数,宽,高)分别为(4096,1,1)、(4096,1,1)、(1000,1,1)。所有的层都是卷积层,故称为         全卷积网络。 

2、对第5层的输出(32倍放大)反卷积到原图大小,得到的结果还是不够精确,还是有细节内容丢失了。于是作者采用skiplayer的方法,将第4层的输出和第3层的输出也依次反卷积,分别需要16倍和8倍上采样,结果就精细一些了。下图是这个卷积和反卷积上采样的过程:

上帝视角:

在浅层处减小upsampling的步长,得到的finelayer 和 高层得到的coarselayer做融合,然后再upsampling得到输出。这种做法兼顾local和global信息,即文中说的combiningwhat and where,取得了不错的效果提升。FCN-32s为59.4,FCN-16s提升到了62.4,FCN-8s提升到62.7。可以看出效果还是很明显的。

跳级结构(skip)

看图二,对原图进行卷积conv1、pool1后图像缩小为1/2;对图像进行第二次卷积conv2、pool2后图像缩小为1/4;对图像进行第三次卷积conv3、pool3后图像缩小为1/8,此时保留pool3的featuremap;对图像进行第四次卷积conv4、pool4后图像缩小为1/16,此时保留pool4的featuremap;对图像进行第五次卷积conv5、pool5后图像缩小为1/32,然后把原来CNN操作过程中的全连接编程卷积操作的conv6、conv7,图像的featuremap的大小依然为原图的1/32,此时图像不再叫featuremap而是叫heatmap。

其实直接使用前两种结构就已经可以得到结果了,这个上采样是通过反卷积(deconvolution)实现的,对第五层的输出(32倍放大)反卷积到原图大小。但是得到的结果还上不不够精确,一些细节无法恢复。于是将第四层的输出和第三层的输出也依次反卷积,分别需要16倍和8倍上采样,结果过也更精细一些了。这种做法的好处是兼顾了local和global信息。

缺点

在这里我们要注意的是FCN的缺点:

  1. 是得到的结果还是不够精细。进行8倍上采样虽然比32倍的效果好了很多,但是上采样的结果还是比较模糊和平滑,对图像中的细节不敏感。

  2. 是对各个像素进行分类,没有充分考虑像素与像素之间的关系。忽略了在通常的基于像素分类的分割方法中使用的空间规整(spatial regularization)步骤,缺乏空间一致性。

猜你喜欢

转载自blog.csdn.net/qq_30159015/article/details/82496304
今日推荐