POJ 1006题详解:

在写代码之前需要先了解一些基础的数学知识:
gcd:最大公约数

mod与%的区别:
%出来的数有正有负,符号取决于左操作数,而mod只能是正;
所以要用%来计算mod的话就要用这样的公式:a mod b = (a % b + b) % b;
括号中的式子可以把左操作数转变为正数。

除数与被除数的区别:
在明白除数与被除数的区别前,要先了解“除”和“除以”的概念。
比如:十四除以二,列出的式子是“14÷2”;而十四除二,列出的式子是”2÷14“,”除“和”除以“的概念是不同的。所以前面的数(14)就是被后面的数(2)除,叫作”被除数“。(列出式子就是”14÷2“)。 ”被除数“就是被”除数“除。14÷2,读作:”14被2除“或”14除以2“。
如果你理解了请看百度百科的同余定理概念:数论中的重要概念。给定一个正整数m,如果两个整数a和b满足a-b能够被m整除,即(a-b)/m得到一个整数,那么就称整数a与b对模m同余,它的另一层含义就是说,a和b除以m的余数相同,记作a≡b(mod m)。对模m同余是整数的一个等价关系。

费马小定理:
对任意的P,A互质,都有A的(P-1)次方取模P等于一.
公式表示为:
A^(P−1)≡1(mod P) (三线等号是表示在模p意义下的相等)

基础数学知识了解完之后,正式开始分析题目:
题意:
  人自出生起就有体力,情感和智力三个生理周期,分别为23,28和33天。一个周期内有一天为峰值,在这一天,人在对应的方面(体力,情感或智力)表现最好。通常这三个周期的峰值不会是同一天。现在给出三个日期,分别对应于体力,情感,智力出现峰值的日期。然后再给出一个起始日期,要求从这一天开始,算出最少再过多少天后三个峰值同时出现。

分析:
  首先我们要知道,任意两个峰值之间一定相距整数倍的周期。假设一年的第N天达到峰值,则下次达到峰值的时间为N+Tk(T是周期,k是任意正整数)。所以,三个峰值同时出现的那一天(S)应满足
S=N1+T1∗k1=N2+T2∗k2=N3+T3∗k3
  N1,N2,N3分别为为体力,情感,智力出现峰值的日期, T1,T2,T3分别为体力,情感,智力周期。 我们需要求出k1,k2,k3三个非负整数使上面的等式成立。

  想直接求出k1,k2,k3貌似很难,但是我们的目的是求出S, 可以考虑从结果逆推。根据上面的等式,S满足三个要求:除以T1余数为N1,除以T2余数为N2,除以T3余数为N3。这样我们就把问题转化为求一个最小数,该数除以T1余N1,除以T2余N2,除以T3余N3。这就是著名的中国剩余定理,我们的老祖宗在几千年前已经对这个问题想出了一个精妙的解法。依据此解法的算法,时间复杂度可达到O(1)。

中国剩余定理
  在《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二(除以3余2),五五数之剩三(除以5余3),七七数之剩二(除以7余2),问物几何?”这个问题称为“孙子问题”,该问题的一般解法国际上称为“中国剩余定理”。具体解法分三步:

找出三个数:从3和5的公倍数中找出被7除余1的最小数15,从3和7的公倍数中找出被5除余1 的最小数21,最后从5和7的公倍数中找出除3余1的最小数70。
用15乘以2(2为最终结果除以7的余数),用21乘以3(3为最终结果除以5的余数),同理,用70乘以2(2为最终结果除以3的余数),然后把三个乘积相加15∗2+21∗3+70∗2得到和233。
用233除以3,5,7三个数的最小公倍数105,得到余数23,即233%105=23。这个余数23就是符合条件的最小数。
  就这么简单。我们在感叹神奇的同时不禁想知道古人是如何想到这个方法的,有什么基本的数学依据吗?

  我们将“孙子问题”拆分成几个简单的小问题,从零开始,试图揣测古人是如何推导出这个解法的。

  首先,我们假设n1是满足除以3余2的一个数,比如2,5,8等等,也就是满足3∗k+2(k>=0)的一个任意数。同样,我们假设n2是满足除以5余3的一个数,n3是满足除以7余2的一个数。

  有了前面的假设,我们先从n1这个角度出发,已知n1满足除以3余2,能不能使得n1+n2的和仍然满足除以3余2?进而使得n1+n2+n3的和仍然满足除以3余2?

  这就牵涉到一个最基本数学定理,如果有a%b=c,则有(a+k∗b)%b=c(k为非零整数),换句话说,如果一个除法运算的余数为c,那么被除数与k倍的除数相加(或相减)的和(差)再与除数相除,余数不变。这个是很好证明的。

  以此定理为依据,如果n2是3的倍数,n1+n2就依然满足除以3余2。同理,如果n3也是3的倍数,那么n1+n2+n3的和就满足除以3余2。这是从n1的角度考虑的,再从n2,n3的角度出发,我们可推导出以下三点:

为使n1+n2+n3的和满足除以3余2,n2和n3必须是3的倍数。
为使n1+n2+n3的和满足除以5余3,n1和n3必须是5的倍数。
为使n1+n2+n3的和满足除以7余2,n1和n2必须是7的倍数。
  因此,为使n1+n2+n3的和作为“孙子问题”的一个最终解,需满足:

n1除以3余2,且是5和7的公倍数。
n2除以5余3,且是3和7的公倍数。
n3除以7余2,且是3和5的公倍数。
  所以,孙子问题解法的本质是从5和7的公倍数中找一个除以3余2的数n1,从3和7的公倍数中找一个除以5余3的数n2,从3和5的公倍数中找一个除以7余2的数n3,再将三个数相加得到解。在求n1,n2,n3时又用了一个小技巧,以n1为例,并非从5和7的公倍数中直接找一个除以3余2的数,而是先找一个除以3余1的数,再乘以2。也就是先求出5和7的公倍数模3下的逆元,再用逆元去乘余数。

  这里又有一个数学公式,如果a%b=c,那么(a∗k)%b=a%b+a%b+…+a%b=c+c+…+c=k∗c(k>0),也就是说,如果一个除法的余数为c,那么被除数的k倍与除数相除的余数为k∗c。展开式中已证明。

  最后,我们还要清楚一点,n1+n2+n3只是问题的一个解,并不是最小的解。如何得到最小解?我们只需要从中最大限度的减掉掉3,5,7的公倍数105即可。道理就是前面讲过的定理“如果a%b=c,则有(a−k∗b)%b=c”。所以(n1+n2+n3)%105就是最终的最小解。

实现代码,我发现写完之后wrong anwser之后参考了下别人的,结果就写成一样的了。。。

package Main;

import java.util.Scanner;

public class Main{

    public static void main(String[] args) {
        Scanner scan = new Scanner(System.in);
        int k = 0;
        while (scan.hasNext()) {
            int p = scan.nextInt();
            int e = scan.nextInt();
            int i = scan.nextInt();
            int d = scan.nextInt();
            if (p == -1 && e == -1 && i == -1 && d == -1) {
                break;
            }
            k++;
            int days = (5544 * p + 14421 * e + 1288 * i - d) % (21252);
            if (days <= 0) {
                days = 23 * 28 * 33 + days;
            }
            System.out.println("Case " + k
                    + ": the next triple peak occurs in " + days
                    + " days.");
        }
    }
}

猜你喜欢

转载自blog.csdn.net/weixin_41126303/article/details/82285023