11.1 程序或算法的时间复杂度

要找固定操作

a[j]>a[i]和a[k]=a[k-1]可以合并为一个固定操作,因为a[j]>a[i]和a[k]=a[k-1]并不是都要执行pow(n,2)次,所以可以看成他们执行次数的和为O(n2)次。

在noi相关比赛时,一定要考虑最坏复杂度。

举例:

常数复杂度:在一个已经排好序的序列里面求最大值或者最小值,在常数时间内就可以找到最大最小值。此时时间(操作次数)和问题的规模无关。

https://blog.csdn.net/qq_27093465/article/details/70690749

(1)时间频度
一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。
(2)时间复杂度
一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度。

在T(n)=4n²-2n+2中,就有f(n)=n²,使得T(n)/f(n)的极限值为4,那么O(f(n)),也就是时间复杂度为O(n²)

https://blog.csdn.net/mycoolx/article/details/6538350

2.1. 交换i和j的内容

     sum=0;                 (一次)

     for(i=1;i<=n;i++)       (n次 )

        for(j=1;j<=n;j++) (n^2次 )

         sum++;       (n^2次 )

解:T(n)=2n^2+n+1 =O(n^2)

2.2.   

    for (i=1;i<n;i++)

    {

        y=y+1;         ①   

        for (j=0;j<=(2*n);j++)    

           x++;        ②      

    }         

解: 语句1的频度是n-1

          语句2的频度是(n-1)*(2n+1)=2n^2-n-1

          f(n)=2n^2-n-1+(n-1)=2n^2-2

          该程序的时间复杂度T(n)=O(n^2).         

O(n)      

                                                      

2.3.

    a=0;

    b=1;                      ①

    for (i=1;i<=n;i++) ②

    {  

       s=a+b;    ③

       b=a;     ④  

       a=s;     ⑤

    }

解: 语句1的频度:2,        

           语句2的频度: n,        

          语句3的频度: n-1,        

          语句4的频度:n-1,    

          语句5的频度:n-1,                                  

          T(n)=2+n+3(n-1)=4n-1=O(n).

                                                                                                 

O(log2n )

2.4.

     i=1;       ①

    while (i<=n)

       i=i*2; ②

解: 语句1的频度是1,  

          设语句2的频度是f(n),   则:2^f(n)<=n;f(n)<=log2n    

          取最大值f(n)= log2n,

          T(n)=O(log2n )

O(n^3)

2.5.

    for(i=0;i<n;i++)

    {  

       for(j=0;j<i;j++)  

       {

          for(k=0;k<j;k++)

             x=x+2;  

       }

    }

解:当i=m, j=k的时候,内层循环的次数为k当i=m时, j 可以取 0,1,...,m-1 , 所以这里最内循环共进行了0+1+...+m-1=(m-1)m/2次所以,i从0取到n, 则循环共进行了: 0+(1-1)*1/2+...+(n-1)n/2=n(n+1)(n-1)/6所以时间复杂度为O(n^3).

                                  

我们还应该区分算法的最坏情况的行为和期望行为。如快速排序的最 坏情况运行时间是 O(n^2),但期望时间是 O(nlogn)。通过每次都仔细 地选择基准值,我们有可能把平方情况 (即O(n^2)情况)的概率减小到几乎等于 0。在实际中,精心实现的快速排序一般都能以 (O(nlogn)时间运行。

下面是一些常用的记法:

访问数组中的元素是常数时间操作,或说O(1)操作。一个算法如 果能在每个步骤去掉一半数据元素,如二分检索,通常它就取 O(logn)时间。用strcmp比较两个具有n个字符的串需要O(n)时间 。常规的矩阵乘算法是O(n^3),因为算出每个元素都需要将n对 元素相乘并加到一起,所有元素的个数是n^2。

指数时间算法通常来源于需要求出所有可能结果。例如,n个元 素的集合共有2n个子集,所以要求出所有子集的算法将是O(2n)的 。指数算法一般说来是太复杂了,除非n的值非常小,因为,在 这个问题中增加一个元素就导致运行时间加倍。不幸的是,确实有许多问题 (如著名 的“巡回售货员问题” ),到目前为止找到的算法都是指数的。如果我们真的遇到这种情况, 通常应该用寻找近似最佳结果的算法替代之。

https://blog.csdn.net/Mars93/article/details/75194138

O后面的括号中有一个函数,指明某个算法的耗时/耗空间与数据增长量之间的关系。其中的n代表输入数据的量。 
比如时间复杂度为O(n),就代表数据量增大几倍,耗时也增大几倍。比如常见的遍历算法。 
再比如时间复杂度O(n^2),就代表数据量增大n倍时,耗时增大n的平方倍,这是比线性更高的时间复杂度。比如冒泡排序,就是典型的O(n^2)的算法,对n个数排序,需要扫描n×n次。 
再比如O(logn),当数据增大n倍时,耗时增大logn倍(这里的log是以2为底的,比如,当数据增大256倍时,耗时只增大8倍,是比线性还要低的时间复杂度)。二分查找就是O(logn)的算法,每找一次排除一半的可能,256个数据中查找只要找8次就可以找到目标。 
O(nlogn)同理,就是n乘以logn,当数据增大256倍时,耗时增大256*8=2048倍。这个复杂度高于线性低于平方。归并排序就是O(nlogn)的时间复杂度。 
O(1)就是最低的时空复杂度了,也就是耗时/耗空间与输入数据大小无关,无论输入数据增大多少倍,耗时/耗空间都不变。 哈希算法就是典型的O(1)时间复杂度,无论数据规模多大,都可以在一次计算后找到目标(不考虑冲突的话)

猜你喜欢

转载自blog.csdn.net/yanyanwenmeng/article/details/82217414
今日推荐