时间复杂度 算法时间复杂度介绍

算法时间复杂度介绍

转载:(https://blog.csdn.net/weboof/article/details/78997815?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522158764425719195162555757%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fall.57662%2522%257D&request_id=158764425719195162555757&biz_id=0&utm_source=distribute.pc_search_result.none-task-blog-2~all~first_rank_v2~rank_v25-1)

算法效率

  • 时间复杂度:评估执行程序所需的时间。可以估算出程序对处理器的使用程度。
  • 空间复杂度:评估执行程序所需的存储空间。可以估算出程序对计算机内存的使用程度。

设计算法时,一般是要先考虑系统环境,然后权衡时间复杂度和空间复杂度,选取一个平衡点。不过,时间复杂度要比空间复杂度更容易产生问题,因此算法研究的主要也是时间复杂度,不特别说明的情况下,复杂度就是指时间复杂度。

时间复杂度

  • 时间频度
    一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。
  • 时间复杂度
    前面提到的时间频度T(n)中,n称为问题的规模,当n不断变化时,时间频度T(n)也会不断变化。但有时我们想知道它变化时呈现什么规律,为此我们引入时间复杂度的概念。一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数,记作T(n)=O(f(n)),它称为算法的渐进时间复杂度,简称时间复杂度。
  • 大O表示法
    像前面用O( )来体现算法时间复杂度的记法,我们称之为大O表示法。算法复杂度可以从最理想情况、平均情况和最坏情况三个角度来评估,由于平均情况大多和最坏情况持平,而且评估最坏情况也可以避免后顾之忧,因此一般情况下,我们设计算法时都要直接估算最坏情况的复杂度。大O表示法O(f(n)中的f(n)的值可以为1、n、logn、n²等,因此我们可以将O(1)、O(n)、O(logn)、O(n²)分别可以称为常数阶、线性阶、对数阶和平方阶,那么如何推导出f(n)的值呢?我们接着来看推导大O阶的方法。

  • 推导大O阶
    我们可以按照如下的规则来进行推导,得到的结果就是大O表示法:
    1.用常数1来取代运行时间中所有加法常数。
    2.修改后的运行次数函数中,只保留最高阶项
    3.如果最高阶项存在且不是1,则去除与这个项相乘的常数。

常见的一些O阶例子

  • 常数阶
  int sum = 0,n = 100; //执行一次  
  sum = (1+n)*n/2; //执行一次  
  System.out.println (sum); //执行一次
  
  
  • 1
  • 2
  • 3

上面算法的运行的次数的函数为f(n)=3,根据推导大O阶的规则1,我们需要将常数3改为1,则这个算法的时间复杂度为O(1)。如果sum = (1+n)*n/2这条语句再执行10遍,因为这与问题大小n的值并没有关系,所以这个算法的时间复杂度仍旧是O(1),我们可以称之为常数阶。

  • 线性阶
for(int i=0;i<n;i++){
//时间复杂度为O(1)的算法
...
}
  
  
  • 1
  • 2
  • 3
  • 4

上面算法循环体中的代码执行了n次,因此时间复杂度为O(n)。

  • 对数阶
int number=1;
while(number<n){
number=number*2;
//时间复杂度为O(1)的算法
...
}
  
  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

可以看出上面的代码,随着number每次乘以2后,都会越来越接近n,当number不小于n时就会退出循环。假设循环的次数为X,则由2^x=n得出x=log₂n,因此得出这个算法的时间复杂度为O(logn)。

  • 平方阶
  for(int i=0;i<n;i++){   
      for(int j=0;j<n;i++){
         //复杂度为O(1)的算法
         ... 
      }
  }
  
  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

推导过程:
n+(n-1)+(n-2)+(n-3)+……+1
=(n+1)+[(n-1)+2]+[(n-2)+3]+[(n-3)+4]+……
=(n+1)+(n+1)+(n+1)+(n+1)+……
=(n+1)n/2
=n(n+1)/2
=n²/2+n/2
根据此前讲过的推导大O阶的规则的第二条:只保留最高阶,因此保留n²/2。根据第三条去掉和这个项的常数,则去掉1/2,最终这段代码的时间复杂度为O(n²)。

时间复杂度对比

看一张图

这里写图片描述

其中x轴代表n值,y轴代表T(n)值(时间复杂度)。T(n)值随着n的值的变化而变化,其中可以看出O(n!)和O(2ⁿ)随着n值的增大,它们的T(n)值上升幅度非常大,而O(logn)、O(n)、O(nlogn)随着n值的增大,T(n)值上升幅度则很小。常用的时间复杂度按照耗费的时间从小到大依次是:

O(1)<O(logn)<O(n)<O(nlogn)<O(n²)<O(n³)<O(2ⁿ)<O(n!)
  
  
  • 1
发布了0 篇原创文章 · 获赞 0 · 访问量 80

算法效率

猜你喜欢

转载自blog.csdn.net/weixin_43556670/article/details/105716334