感知机学习算法(PLA)

Perception Learning Algorithm, PLA

1.感知机

感知机是一种线性分类模型,属于判别模型。

感知机模型给出了由输入空间到输出空间的映射:

  f(X) = sign(WTX + b)

简单来说,就是找到一个分类超平面 WTX + b =0,将数据集中的正例和反例完全分开。

2.感知机学习算法(PLA)

感知机学习算法是为了找到 Wb  以确定分类超平面。为了减少符号,令 W = [b, W1, W2, ..., Wn]X = [1, X1, X2, ..., Xn],则 f(X) = sign(WTX )

感知机学习算法是由误分类驱动的:

  • 对于实际为正例(y=1)的误分类点,则对 W 进行如下修正:

    W = W + X

    从而使得 WTX 变大更接近大于 0, 即更接近正确分类;  (W+X)TX = WTX + ||X||2

  • 对于实际为正例(y=1)的误分类点,则对 W 进行如下修正:    

    W = W - X    

    从而使得 WT变小,更接近小于 0, 即更接近正确分类;  (W-X)TX = WTX - ||X||2

综上,令 初值 W0=0,然后每次选取一个误分类点,更新 W = W + y X ,直到所有点都被正确分类。

PS:不同的初值或者选取不同的误分类点,解可以不同。

具体算法如下:

3. PLA算法的收敛性

首先,确定数据集是 线性可分 的,否则,PLA永远不收敛。

假设数据集线性可分,则一定存在一个分类超平面可以将正例负例完全区分。

设最优的参数为 Wf,则:

  yWfTX≥ minn(ynWfTXn) > 0

已知 WfT越大,则 WWf 越接近。(联想协方差)

  WfTWWfT (WT-1+ yT-1 XT-1 

                    = WfT WT-1 yT-1WfTXT-1

                    ≥  WfT WT-1 minn(ynWfTXn)                                                                         (1)

                    > WfT WT-1 + 0

然而,WfTW 越大,也有可能只是 W  的元素值放大,但是W 与 Wf 的角度却没有接近。

所以,我们要讨论 $\frac{W_{f}^{T}W_{T}}{\left \| W_{f} \right \|\left \| W_{T} \right \|}$ 是否越来越大,若是,则 W 越来越接近最优值 Wf 。(联想 SVM 中 函数间隔 和 集合间隔 的概念)

我们知道,PLA 是误分类点驱动,所以有:

  yWTXi  ≤ 0

又有:

  W= WT-1 yT-1 XT-1

则:

  || WT ||2|| WT-1 ||2 + yT-12 || XT-1 ||2 + 2 yT-1 WT-1T XT-1

                    ≤ || WT-1 ||2 + yT-12 || XT-1 ||2  = || WT-1 ||2 + || XT-1 ||2 

                     ≤ || WT-1 ||2 + minn|| X||2                                                                             (2)

W0 = 0

令 ρ = minn(ynWfTXn) ,代入式 (1):

  WfTWT   ≥  WfT WT-1 ρ  ≥  WfT WT-2 + 2ρ  ≥  ...    WfT W0 + Tρ = Tρ                     (3)       

R = minn|| X||2 ,代入式 (2):

  || W||2  ≤  || WT-1 ||2 + R2  ≤  || WT-2 ||2 + 2R2  ≤  ...  ≤  || W||2 + TR2  = TR2            (4)

由 (4), 则:

  $\left \| W_{f} \right \|\left \| W_{T} \right \|\leq \left \| W_{f} \right \|\sqrt{T}R$                                                                                   (5)

由 (3) (5):

  $\frac{W_{f}^{T}W_{T}}{\left \| W_{f} \right \|\left \| W_{T} \right \|}\geq \frac{T\rho }{\left \| w_{f} \right \|\sqrt{T}R}=\frac{\sqrt{T}\rho }{\left \| W_{f} \right \|R}$                                                                              (6)

可以看到,$\frac{W_{f}^{T}W_{T}}{\left \| W_{f} \right \|\left \| W_{T} \right \|}$ 随着迭代次数 T 的增加而增加, 说明 W 在向着最优值 Wf 逐渐靠近。 

由 (6) :

  $\frac{\sqrt{T}\rho}{\left \| W_{f} \right \|R}\leq 1$     向量点积,当 WT = Wf 时 cosθ = cos0 = 1

  => $T\leq \frac{\left \| W_{f} \right \|^{2}R^{2}}{\rho ^{2}}$

令 $\gamma =\frac{\rho }{\left \| W_{f} \right \|}$:

  => $T\leq \frac{R^{2}}{\gamma ^{2}} $                                                                                                                   (7)

式 (7) 表明,迭代次数(误分类的次数) 有上界,经过有限次迭代可以找到将训练数据完全正确分开的分类超平面。

这就说明,当训练数据集线性可分时,PLA 迭代是收敛的。

PS:PLA 可以有许多解,当选择不同的初值或者选择的误分类点的顺序不同时,解可以不同。

4.线性不可分时的PLA(Pocket 算法)

5.PLA的对偶形式

 

2018-09-03

猜你喜欢

转载自www.cnblogs.com/dyj-ng/p/9577807.html