MobileNets v1

论文:

MobileNets: Efficient Convolutional Neural Networks for MobileVision Applications

https://arxiv.org/abs/1704.04861

MobileNets是Google针对手机等嵌入式设备提出的一种轻量级的深层神经网络;中点在于压缩模型,同时保证精度。

MobileNets是基于一个流线型的架构,它使用深度可分离的卷积来构建轻量级的深层神经网络。

Deep-wise卷积

MobileNets将一个标准的卷积分解为为一个深度卷积(depthwise convolutions)和一个点卷积(pointwise convolution)(1 × 1卷积核)。简单理解就是矩阵的因式分解。深度卷积将每个卷积核应用到每一个通道,而1 × 1卷积用来组合通道卷积的输出,这种分解可以有效减少计算量,降低模型大小。

è¿éåå¾çæè¿°

图a中的卷积核就是最常见的3D卷积,替换为deep-wise方式:一个逐个通道处理的2D卷积(图b)结合3D的1*1卷积(图c)

下图很好说明分离卷积过程:

mobilenet-v1-conv

直观上来看,这种分解在效果上确实是等价的。比如,把上图的代号化为实际的数字,输入图片维度是11 × 11 × 3,标准卷积为3 × 3 × 3 ×16(假设stride为2,padding为1),那么可以得到输出为6 × 6 × 16的输出结果。现在输入图片不变,先通过一个维度是3 × 3 × 1× 3的深度卷积(输入是3通道,这里有3个卷积核,对应着进行计算,理解成for循环),得到6 × 6 × 3的中间输出,然后再通过一个维度是1 × 1 × 3 ×16的1 ×1卷积,同样得到输出为6 × 6 × 16

传统的3D卷积使用一个和输入数据通道数相同的卷积核在逐个通道卷积后求和最后得出一个数值作为结果,计算量为:

         其中M为输入的通道数,Dk为卷积核的宽和高

一个卷积核处理输入数据时的计算量为(有Padding):

       其中DF为输入的宽和高

在某一层如果使用N个卷积核,这一个卷积层的计算量为:

从理论上来看,一组和输入通道数相同的2D卷积核的运算量为:

3D的1*1卷积核的计算量为:

因此这种组合方式的计算量为:

deep-wise方式的卷积相比于传统3D卷积计算量为:

网络结构

传统的3D卷积常见的使用方式如下图左侧所示,deep-wise卷积的使用方式如下图右边所示。

deep-wise的卷积和后面的1x1卷积被当成了两个独立的模块,都在输出结果的部分加入了Batch Normalization和非线性激活单元。

Deep-wise结合1x1的卷积方式代替传统卷积不仅在理论上会更高效,而且由于大量使用1x1的卷积,可以直接使用高度优化的数学库来完成这个操作。

在MobileNet中,有95%的计算量和75%的参数属于1x1卷积。下图为MobileNet在ImageNet上训练时使用的网络架构(表格中含有dw的就表示这一层采用了deep-wise结合1x1的方式)

下图为MobileNet对于不同结构单元在计算量和参数数量方面的统计

宽度因子和分辨率因子

尽管标准的MobileNet在计算量和模型尺寸方面具备了很明显的优势,但是,在一些对运行速度或内存有极端要求的场合,还需要更小更快的模型,如何能够在不重新设计模型的情况下,以最小的改动就可以获得更小更快的模型呢?本文中提出的宽度因子(width multiplier)和分辨率因子(resolutionmultiplier)就是解决这些问题的配置参数。

宽度因子α是一个属于(0,1]之间的数,附加于网络的通道数。简单来说就是新网络中每一个模块要使用的卷积核数量相较于标准的MobileNet比例。对于deep-wise结合1x1方式的卷积核,计算量为:

α常用的配置为1,0.75,0.5,0.25;当α等于1时就是标准的MobileNet。通过参数α可以非常有效的将计算量和参数数量约减到α的平方倍。

通过下图可以看出使用α系数进行网络参数的约减时,在ImageNet上的准确率,为准确率,参数数量和计算量之间的权衡提供了参考(每一个项中最前面的数字表示α的取值)。

分辨率因子β的取值范围在(0,1]之间,是作用于每一个模块输入尺寸的约减因子,简单来说就是将输入数据以及由此在每一个模块产生的特征图都变小了,结合宽度因子α,deep-wise结合1x1方式的卷积核计算量为:

下图为使用不同的β系数作用于标准MobileNet时,对精度和计算量以的影响(α固定)

参考:

https://blog.csdn.net/t800ghb/article/details/78879612

猜你喜欢

转载自blog.csdn.net/u010349092/article/details/81607819
v1