Coursera机器学习课程笔记(二)

Coursera机器学习课程笔记(二)

有作业的情况下就会选择记录下作业与答案。

1.Warm-up Exercise

warmUpExercise.m文件:

function A = warmUpExercise()
%WARMUPEXERCISE Example function in octave
%   A = WARMUPEXERCISE() is an example function that returns the 5x5 identity matrix

% ============= YOUR CODE HERE ==============
% Instructions: Return the 5x5 identity matrix 
%               In octave, we return values by defining which variables
%               represent the return values (at the top of the file)
%               and then set them accordingly. 
A = eye(5);
% ===========================================
end

2.Computing Cost (for One Variable)

computeCost.m文件:

function J = computeCost(X, y, theta)
%COMPUTECOST Compute cost for linear regression
%   J = COMPUTECOST(X, y, theta) computes the cost of using theta as the
%   parameter for linear regression to fit the data points in X and y

% Initialize some useful values
m = length(y); % number of training examples

% You need to return the following variables correctly 

% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta
%               You should set J to the cost.

J = 1/(2*m) * sum((X * theta - y) .^ 2); %将损失函数公式代码化
% =========================================================================

end

这里的成本函数以及下面的梯度下降函数直接以多变量情况考虑,不仅适应目前的单变量情况,在后面的多变量情况下也能直接套用。

3.Gradient Descent (for One Variable)

gradientDescent.m文件:

function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
%GRADIENTDESCENT Performs gradient descent to learn theta
%   theta = GRADIENTDESCENT(X, y, theta, alpha, num_iters) updates theta by 
%   taking num_iters gradient steps with learning rate alpha

% Initialize some useful values
m = length(y); % number of training examples
J_history = zeros(num_iters, 1);

for iter = 1:num_iters

    % ====================== YOUR CODE HERE ======================
    % Instructions: Perform a single gradient step on the parameter vector
    %               theta. 
    %
    % Hint: While debugging, it can be useful to print out the values
    %       of the cost function (computeCost) and gradient here.
    %

    theta = theta - alpha  / m * (X' * (X * theta - y)) ;
    %梯度下降算法代码化

    % ============================================================

    % Save the cost J in every iteration    
    J_history(iter) = computeCost(X, y, theta);
end

end

4.Feature Normalization

featureNormalize.m文件:

function [X_norm, mu, sigma] = featureNormalize(X)
%FEATURENORMALIZE Normalizes the features in X 
%   FEATURENORMALIZE(X) returns a normalized version of X where
%   the mean value of each feature is 0 and the standard deviation
%   is 1. This is often a good preprocessing step to do when
%   working with learning algorithms.

% You need to set these values correctly
X_norm = X;
mu = zeros(1, size(X, 2));
sigma = zeros(1, size(X, 2));

% ====================== YOUR CODE HERE ======================
% Instructions: First, for each feature dimension, compute the mean
%               of the feature and subtract it from the dataset,
%               storing the mean value in mu. Next, compute the 
%               standard deviation of each feature and divide
%               each feature by it's standard deviation, storing
%               the standard deviation in sigma. 
%
%               Note that X is a matrix where each column is a 
%               feature and each row is an example. You need 
%               to perform the normalization separately for 
%               each feature. 
%
% Hint: You might find the 'mean' and 'std' functions useful.
%       

mu = mean(X);  %计算X矩阵每列的平均值
sigma = std(X); %计算X矩阵每列的标准差
X_norm = (X - mu) ./ sigma;   
%matlab的矩阵加减法非常智能,这一步直接实现了Feature Normalization(先减平均值,再除以标准差)

% ============================================================

end

值得一提是,Matlab中的矩阵运算非常智能,可以很方便的实现你想要的效果,比如程序中所用到运算可以用下面这个例子解释:
这里写图片描述
其运算过程就是将a的每一行都减去b,然后将所得矩阵的每一行依次点除b。

5.Computing Cost (for Multiple Variables)

与前面写的单变量的代码一致
computeCostMulti.m文件:

function J = computeCostMulti(X, y, theta)
%COMPUTECOSTMULTI Compute cost for linear regression with multiple variables
%   J = COMPUTECOSTMULTI(X, y, theta) computes the cost of using theta as the
%   parameter for linear regression to fit the data points in X and y

% Initialize some useful values
m = length(y); % number of training examples

% You need to return the following variables correctly 
J = 0;

% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta
%               You should set J to the cost.

J = 1/(2*m) * sum((X * theta - y) .^ 2);

% =========================================================================

end

6.Gradient Descent (for Multiple Variables)

与前面写的单变量的代码一致
gradientDescentMulti.m文件:

function [theta, J_history] = gradientDescentMulti(X, y, theta, alpha, num_iters)
%GRADIENTDESCENTMULTI Performs gradient descent to learn theta
%   theta = GRADIENTDESCENTMULTI(x, y, theta, alpha, num_iters) updates theta by
%   taking num_iters gradient steps with learning rate alpha

% Initialize some useful values
m = length(y); % number of training examples
J_history = zeros(num_iters, 1);

for iter = 1:num_iters

    % ====================== YOUR CODE HERE ======================
    % Instructions: Perform a single gradient step on the parameter vector
    %               theta. 
    %
    % Hint: While debugging, it can be useful to print out the values
    %       of the cost function (computeCostMulti) and gradient here.
    %

    theta = theta - alpha  / m * (X' * (X * theta - y)) ;

    % ============================================================
    % Save the cost J in every iteration    
    J_history(iter) = computeCostMulti(X, y, theta);

end

end

7.Normal Equations

normalEqn.m文件:

function [theta] = normalEqn(X, y)
%NORMALEQN Computes the closed-form solution to linear regression 
%   NORMALEQN(X,y) computes the closed-form solution to linear 
%   regression using the normal equations.

theta = zeros(size(X, 2), 1);

% ====================== YOUR CODE HERE ======================
% Instructions: Complete the code to compute the closed form solution
%               to linear regression and put the result in theta.
%

% ---------------------- Sample Solution ----------------------

theta = pinv(X'*X) * X' * y;  %直接照搬公式即可

% -------------------------------------------------------------
% ============================================================

end

猜你喜欢

转载自blog.csdn.net/qq_32925781/article/details/81509682
今日推荐