选择性搜索 Selective Search -- 源码分析

目录

1 前言

2 Selective Search算法

3 Python源码分析



  • 1 前言

在目标检测时,为了定位到目标的具体位置,通常会把图像分成许多子块(sub-regions / patches),然后把子块作为输入,送到目标识别的模型中。selective search就是一种选择子块的启发式方法。



  • 2 Selective Search算法

主要思路:输入一张图片,首先通过图像分割的方法(如大名鼎鼎的felzenszwalb算法)获得很多小的区域,然后对这些小的区域不断进行合并,一直到无法合并为止。此时这些原始的小区域和合并得到的区域的就是我们得到的bounding box.

算法分为如下几个大步:

1. 生成原始的区域集R(利用felzenszwalb算法)

2. 计算区域集R里每个相邻区域的相似度S={s1,s2,…} 

3. 找出相似度最高的两个区域,将其合并为新集,添加进R 

4. 从S中移除所有与第3步中有关的子集 

5. 计算新集与所有子集的相似度 

6.跳至第三步,不断循环,合并,直至S为空(到不能再合并时为止)


  • 3 Python源码分析

Github上有一个选择性搜索的简单实现 -- selectivesearch ,可以帮助大家理解

import skimage.data
import selectivesearch

img = skimage.data.astronaut()
img_lbl, regions = selectivesearch.selective_search(img, scale=500, sigma=0.9, min_size=10)
regions[:10]
=>
[{'labels': [0.0], 'rect': (0, 0, 15, 24), 'size': 260},
 {'labels': [1.0], 'rect': (13, 0, 1, 12), 'size': 23},
 {'labels': [2.0], 'rect': (0, 15, 15, 11), 'size': 30},
 {'labels': [3.0], 'rect': (15, 14, 0, 0), 'size': 1},
 {'labels': [4.0], 'rect': (0, 0, 61, 153), 'size': 4927},
 {'labels': [5.0], 'rect': (0, 12, 61, 142), 'size': 177},
 {'labels': [6.0], 'rect': (7, 54, 6, 17), 'size': 8},
 {'labels': [7.0], 'rect': (28, 50, 18, 32), 'size': 22},
 {'labels': [8.0], 'rect': (2, 99, 7, 24), 'size': 24},
 {'labels': [9.0], 'rect': (14, 118, 79, 117), 'size': 4008}]

alt tag



1. 用户生成原始区域集的函数,其中用到了felzenszwalb图像分割算法。每一个区域都有一个编号,将编号并入图片中,方便后面的操作

def _generate_segments(im_orig, scale, sigma, min_size):
    """
        segment smallest regions by the algorithm of Felzenswalb and
        Huttenlocher
    """

    # open the Image
    im_mask = skimage.segmentation.felzenszwalb(
        skimage.util.img_as_float(im_orig), scale=scale, sigma=sigma,
        min_size=min_size)

    # merge mask channel to the image as a 4th channel
    im_orig = numpy.append(
        im_orig, numpy.zeros(im_orig.shape[:2])[:, :, numpy.newaxis], axis=2)
    im_orig[:, :, 3] = im_mask

    return im_orig

2. 计算两个区域的相似度
论文中考虑了四种相似度 -- 颜色,纹理,尺寸,以及交叠。

其中颜色和纹理相似度,通过获取两个区域的直方图的交集,来判断相似度。

最后的相似度是四种相似度的加和。

def _sim_colour(r1, r2):
    """
        calculate the sum of histogram intersection of colour
    """
    return sum([min(a, b) for a, b in zip(r1["hist_c"], r2["hist_c"])])


def _sim_texture(r1, r2):
    """
        calculate the sum of histogram intersection of texture
    """
    return sum([min(a, b) for a, b in zip(r1["hist_t"], r2["hist_t"])])


def _sim_size(r1, r2, imsize):
    """
        calculate the size similarity over the image
    """
    return 1.0 - (r1["size"] + r2["size"]) / imsize


def _sim_fill(r1, r2, imsize):
    """
        calculate the fill similarity over the image
    """
    bbsize = (
        (max(r1["max_x"], r2["max_x"]) - min(r1["min_x"], r2["min_x"]))
        * (max(r1["max_y"], r2["max_y"]) - min(r1["min_y"], r2["min_y"]))
    )
    return 1.0 - (bbsize - r1["size"] - r2["size"]) / imsize


def _calc_sim(r1, r2, imsize):
    return (_sim_colour(r1, r2) + _sim_texture(r1, r2)
            + _sim_size(r1, r2, imsize) + _sim_fill(r1, r2, imsize))

3. 用于计算颜色和纹理的直方图的函数

颜色直方图:将色彩空间转为HSV,每个通道下以bins=25计算直方图,这样每个区域的颜色直方图有25*3=75个区间。 对直方图除以区域尺寸做归一化后使用下式计算相似度:

纹理相似度:论文采用方差为1的高斯分布在8个方向做梯度统计,然后将统计结果(尺寸与区域大小一致)以bins=10计算直方图。直方图区间数为8*3*10=240(使用RGB色彩空间)。这里是用了LBP(local binary pattern)获取纹理特征,建立直方图,其余相同

其中,是直方图中第个bin的值。

def _calc_colour_hist(img):
    """
        calculate colour histogram for each region
        the size of output histogram will be BINS * COLOUR_CHANNELS(3)
        number of bins is 25 as same as [uijlings_ijcv2013_draft.pdf]
        extract HSV
    """

    BINS = 25
    hist = numpy.array([])

    for colour_channel in (0, 1, 2):

        # extracting one colour channel
        c = img[:, colour_channel]

        # calculate histogram for each colour and join to the result
        hist = numpy.concatenate(
            [hist] + [numpy.histogram(c, BINS, (0.0, 255.0))[0]])

    # L1 normalize
    hist = hist / len(img)

    return hist


def _calc_texture_gradient(img):
    """
        calculate texture gradient for entire image
        The original SelectiveSearch algorithm proposed Gaussian derivative
        for 8 orientations, but we use LBP instead.
        output will be [height(*)][width(*)]
    """
    ret = numpy.zeros((img.shape[0], img.shape[1], img.shape[2]))

    for colour_channel in (0, 1, 2):
        ret[:, :, colour_channel] = skimage.feature.local_binary_pattern(
            img[:, :, colour_channel], 8, 1.0)

    return ret


def _calc_texture_hist(img):
    """
        calculate texture histogram for each region
        calculate the histogram of gradient for each colours
        the size of output histogram will be
            BINS * ORIENTATIONS * COLOUR_CHANNELS(3)
    """
    BINS = 10

    hist = numpy.array([])

    for colour_channel in (0, 1, 2):

        # mask by the colour channel
        fd = img[:, colour_channel]

        # calculate histogram for each orientation and concatenate them all
        # and join to the result
        hist = numpy.concatenate(
            [hist] + [numpy.histogram(fd, BINS, (0.0, 1.0))[0]])

    # L1 Normalize
    hist = hist / len(img)

    return hist

4. 提取区域的尺寸,颜色和纹理特征

def _extract_regions(img):

    R = {}

    # get hsv image
    hsv = skimage.color.rgb2hsv(img[:, :, :3])

    # pass 1: count pixel positions
    for y, i in enumerate(img):

        for x, (r, g, b, l) in enumerate(i):

            # initialize a new region
            if l not in R:
                R[l] = {
                    "min_x": 0xffff, "min_y": 0xffff,
                    "max_x": 0, "max_y": 0, "labels": [l]}

            # bounding box
            if R[l]["min_x"] > x:
                R[l]["min_x"] = x
            if R[l]["min_y"] > y:
                R[l]["min_y"] = y
            if R[l]["max_x"] < x:
                R[l]["max_x"] = x
            if R[l]["max_y"] < y:
                R[l]["max_y"] = y

    # pass 2: calculate texture gradient
    tex_grad = _calc_texture_gradient(img)

    # pass 3: calculate colour histogram of each region
    for k, v in list(R.items()):

        # colour histogram
        masked_pixels = hsv[:, :, :][img[:, :, 3] == k]
        R[k]["size"] = len(masked_pixels / 4)
        R[k]["hist_c"] = _calc_colour_hist(masked_pixels)

        # texture histogram
        R[k]["hist_t"] = _calc_texture_hist(tex_grad[:, :][img[:, :, 3] == k])

    return R

5. 找邻居 -- 通过计算每个区域与其余的所有区域是否有相交,来判断是不是邻居

def _extract_neighbours(regions):

    def intersect(a, b):
        if (a["min_x"] < b["min_x"] < a["max_x"]
                and a["min_y"] < b["min_y"] < a["max_y"]) or (
            a["min_x"] < b["max_x"] < a["max_x"]
                and a["min_y"] < b["max_y"] < a["max_y"]) or (
            a["min_x"] < b["min_x"] < a["max_x"]
                and a["min_y"] < b["max_y"] < a["max_y"]) or (
            a["min_x"] < b["max_x"] < a["max_x"]
                and a["min_y"] < b["min_y"] < a["max_y"]):
            return True
        return False

    R = list(regions.items())
    neighbours = []
    for cur, a in enumerate(R[:-1]):
        for b in R[cur + 1:]:
            if intersect(a[1], b[1]):
                neighbours.append((a, b))

    return neighbours

6. 合并两个区域的函数

def _merge_regions(r1, r2):
    new_size = r1["size"] + r2["size"]
    rt = {
        "min_x": min(r1["min_x"], r2["min_x"]),
        "min_y": min(r1["min_y"], r2["min_y"]),
        "max_x": max(r1["max_x"], r2["max_x"]),
        "max_y": max(r1["max_y"], r2["max_y"]),
        "size": new_size,
        "hist_c": (
            r1["hist_c"] * r1["size"] + r2["hist_c"] * r2["size"]) / new_size,
        "hist_t": (
            r1["hist_t"] * r1["size"] + r2["hist_t"] * r2["size"]) / new_size,
        "labels": r1["labels"] + r2["labels"]
    }
    return rt

7. 主函数 -- Selective Search

scale:图像分割的集群程度。值越大,意味集群程度越高,分割的越少,获得子区域越大。默认为1

signa: 图像分割前,会先对原图像进行高斯滤波去噪,sigma即为高斯核的大小。默认为0.8

min_size  : 最小的区域像素点个数。当小于此值时,图像分割的计算就停止,默认为20

每次选出相似度最高的一组区域(如编号为100和120的区域),进行合并,得到新的区域(如编号为300)。然后计算新的区域300与区域100的所有邻居和区域120的所有邻居的相似度,加入区域集S。不断循环,知道S为空,此时最后只剩下一个区域,而且它的像素数会非常大,接近原始图片的像素数,因此无法继续合并。最后退出程序。

def selective_search(
        im_orig, scale=1.0, sigma=0.8, min_size=50):
    '''Selective Search
    Parameters
    ----------
        im_orig : ndarray
            Input image
        scale : int
            Free parameter. Higher means larger clusters in felzenszwalb segmentation.
        sigma : float
            Width of Gaussian kernel for felzenszwalb segmentation.
        min_size : int
            Minimum component size for felzenszwalb segmentation.
    Returns
    -------
        img : ndarray
            image with region label
            region label is stored in the 4th value of each pixel [r,g,b,(region)]
        regions : array of dict
            [
                {
                    'rect': (left, top, width, height),
                    'labels': [...],
                    'size': component_size
                },
                ...
            ]
    '''
    assert im_orig.shape[2] == 3, "3ch image is expected"

    # load image and get smallest regions
    # region label is stored in the 4th value of each pixel [r,g,b,(region)]
    img = _generate_segments(im_orig, scale, sigma, min_size)

    if img is None:
        return None, {}

    imsize = img.shape[0] * img.shape[1]
    R = _extract_regions(img)

    # extract neighbouring information
    neighbours = _extract_neighbours(R)

    # calculate initial similarities
    S = {}
    for (ai, ar), (bi, br) in neighbours:
        S[(ai, bi)] = _calc_sim(ar, br, imsize)

    # hierarchal search
    while S != {}:

        # get highest similarity
        i, j = sorted(S.items(), key=lambda i: i[1])[-1][0]

        # merge corresponding regions
        t = max(R.keys()) + 1.0
        R[t] = _merge_regions(R[i], R[j])

        # mark similarities for regions to be removed
        key_to_delete = []
        for k, v in list(S.items()):
            if (i in k) or (j in k):
                key_to_delete.append(k)

        # remove old similarities of related regions
        for k in key_to_delete:
            del S[k]

        # calculate similarity set with the new region
        for k in [a for a in key_to_delete if a != (i, j)]:
            n = k[1] if k[0] in (i, j) else k[0]
            S[(t, n)] = _calc_sim(R[t], R[n], imsize)

    regions = []
    for k, r in list(R.items()):
        regions.append({
            'rect': (
                r['min_x'], r['min_y'],
                r['max_x'] - r['min_x'], r['max_y'] - r['min_y']),
            'size': r['size'],
            'labels': r['labels']
        })

    return img, regions

猜你喜欢

转载自blog.csdn.net/Tomxiaodai/article/details/81412354