逻辑回归与二元分类——含python代码

  逻辑回归和线性回归的最终目标都是拟合一个线性函数 y = θ T x ,使得我们的预测输出和真实输出之间的差异最小。它们的区别在于损失函数不一样,线性回归的损失函数( M S E )是基于模型误差服从正态分布的假设推导出来的,而逻辑回归的损失函数则是基于极大似然的假设推导出来的,即所有样本结果的后验概率乘积最大。

预测函数

  因为我们利用超平面 θ T x = 0 来分类,所以当一个样本落在超平面上,我们就可以认为该样本为正样本的概率等于负样本的概率,即:

P ( y = 1 | x ) P ( y = 1 | x ) = 1

对上式两边取对数:
l n P ( y = 1 | x ) P ( y = 1 | x ) = 0 = θ T x

因为 P ( y = 1 | x ) + P ( y = 1 | x ) = 1 ,所以可以得到:
l n P ( y = 1 | x ) 1 P ( y = 1 | x ) = 0 = θ T x

整理可得:
P ( y = 1 | x ) = e θ T x 1 + e θ T x

所以 P ( y = 1 | x ) = 1 P ( y = 1 | x ) = 1 1 + e θ T x P ( y = 1 | x ) 的分子分母同时除以 e θ T x 得到 1 1 + e θ T x ,这就是 s i g m o i d 函数的推导过程。其函数曲线如下图所示:

sigmoid函数曲线

我们可以将其理解为一种非线性变换,目的是把 ( , + ) 的数值映射到0到1之间,我们将映射结果视为 y = 1 概率。 s i g m o i d 函数有一个重要的性质:
f ( z ) = f ( z ) ( 1 f ( z ) )

该性质在后面求偏导数的时候会用到。

目标函数

  我们令 h ( x ) = 1 1 + e θ T x ,由前面的推导可以将 h ( x ) 理解为样本点 x 为正样本的概率 P ( y = 1 | x ) ,即 P ( y = 1 | x ) = h ( x ) 。根据极大似然估计的思想,各个样本的结果出现总概率(即后验概率乘积)需要达到最大值,即:

m a x { i = 1 N P ( y i = k i | x i ) } ( k i = 1 , 1 )

因为 1 h ( x ) = h ( x ) ,所以上式取对数后可以得到:
(1) m a x { i = 1 N l n P ( y i = k i | x i ) } = m a x { i = 1 N l n ( h ( y i x i ) ) } (2) = m a x { i = 1 N l n ( 1 1 + e y i θ T x ) } (3) = m i n { i = 1 N l n ( 1 + e y i θ T x ) }

这便是逻辑回归的优化目标函数,它的最终形式表示为:
J = 1 N i = 1 N l n ( 1 + e y i θ T x )

在吴恩达的机器学习课程中,逻辑回归的目标函数形式为:
J = 1 N i = 1 N { y i l n ( h ( x i ) ) ( 1 y i ) l n ( 1 h ( x i ) ) }

是因为它将负样本 y i 表示为0,它和我们推导出来的结果本质是相同的。

梯度下降

  我们推导过程中有一步为: m a x { i = 1 N l n ( h ( y i x i ) ) } ,为了方便利用 s i g m o i d ,我们便把这个式子作为优化目标。要求一个凸函数的最大值,更新公式为:

θ = θ + θ J

g ( θ T x ) = h ( x ) = 1 1 + e θ T x ,优化目标可以变换为: J ( θ ) = m a x { i = 1 N l n ( g ( y i θ T x i ) ) } ,对我们的优化目标进行求导:
(4) θ J = i = 1 N 1 g ( y i θ T x i ) θ g ( y i θ T x i ) (5) = i = 1 N 1 g ( y i θ T x i ) g ( y i θ T x i ) ( 1 g ( y i θ T x i ) ) θ ( y i θ T x i ) (6) = i = 1 N ( 1 g ( y i θ T x i ) ) y i x i

所以梯度下降的更新方程为:
θ = θ + α N i = 1 N ( 1 g ( y i θ T x i ) ) y i x i

代码块

自己用python撸了个逻辑回归,有问题请留言评论区:

import numpy as np
from sklearn.datasets import load_breast_cancer
from sklearn.preprocessing import scale
from random import random
from numpy import random as nr
from sklearn.model_selection import train_test_split

def sigmoid(x):
    return 1/(1+np.exp(-x))

def RandSam(train_data, train_target, sample_num):#随机采样传入训练函数进行迭代
    data_num = train_data.shape[0]
    if sample_num > data_num:
        return -1
    else:
        data = []
        target = []
        for i in range(sample_num):
            tmp = nr.randint(0,data_num)
            data.append(train_data[tmp])
            target.append(train_target[tmp])
    return np.array(data),np.array(target)

class LogisticClassifier(object):
    alpha = 0.01
    circle = 1000
    l2 = 0.01
    weight = np.array([])
    def __init__(self, learning_rate, circle_num, L2):
        self.alpha = learning_rate
        self.circle = circle_num
        self.l2 = L2
    def fit(self, train_data, train_target):
        data_num = train_data.shape[0]
        feature_size = train_data.shape[1]
        ones = np.ones((data_num,1))
        train_data = np.hstack((train_data,ones))
        #Y = train_target
        self.weight = np.round(np.random.normal(0,1,feature_size+1),2)
        for i in range(self.circle):
            delta = np.zeros((feature_size+1,))
            X,Y = RandSam(train_data, train_target, 50)
            for j in range(50):
                delta += (1-sigmoid(Y[j]*np.dot(X[j],self.weight)))* \
                          Y[j]*X[j]
            self.weight += self.alpha*delta-self.l2*self.weight

    def predict(self, test_data):
        data_num = test_data.shape[0]
        ones = np.ones((data_num,1))
        X = np.hstack((test_data,ones))
        return sigmoid(np.dot(X,self.weight))

    def evaluate(self, predict_target, test_target):
        predict_target[predict_target>=0.5] = 1
        predict_target[predict_target<0.5] = -1
        return sum(predict_target==test_target)/len(predict_target)

if __name__ == "__main__":
    cancer = load_breast_cancer()
    xtr, xval, ytr, yval = train_test_split(cancer.data, cancer.target, \
    test_size=0.2, random_state=7)
    logistics = LogisticClassifier(0.01,2000, 0.01)
    logistics.fit(xtr, ytr)
    predict = logistics.predict(xval)
    print('the accuracy is ',logistics.evaluate(predict, yval),'.')

猜你喜欢

转载自blog.csdn.net/zesenchen/article/details/79589990