C++小知识(九)——Eigen库的基本使用方法、PCL计算协方差矩阵

转载自:https://blog.csdn.net/r1254/article/details/47418871

以及https://blog.csdn.net/wokaowokaowokao12345/article/details/53397488

第一部分:

1.1前言

Eigen是一个高层次的C ++库,有效支持 得到的线性代数,矩阵和矢量运算,数值分析及其相关的算法。

1.2配置

关于Eigen库的配置只需要在属性表包含目录中添加Eigen路径即可。 
这里写图片描述

1.3例子

Example 1:

#include <iostream>
#include <Eigen/Dense>

void main()
{
    Eigen::MatrixXd m(2, 2);            //声明一个MatrixXd类型的变量,它是2*2的矩阵,未初始化
    m(0, 0) = 3;                        //将矩阵第1个元素初始化3
    m(1, 0) = 2.5;                      //将矩阵第3个元素初始化3
    m(0, 1) = -1;  
    m(1, 1) = m(1, 0) + m(0, 1);  
    std::cout << m << std::endl;
}

Eigen头文件定义了很多类型,但对于简单的应用程序,可能只使用MatrixXd类型。 这表示任意大小的矩阵(MatrixXd中的X),其中每个条目是双精度(MatrixXd中的d)。 Eigen / Dense头文件定义了MatrixXd类型和相关类型的所有成员函数。 在这个头文件中定义的所有类和函数都在特征名称空间中。

这里写图片描述

Example 2:

#include <iostream>
#include <Eigen/Dense>
using namespace Eigen;
using namespace std;
int main()
{  
    MatrixXd m = MatrixXd::Random(3,3);                 //使用Random随机初始化3*3的矩阵
    m = (m + MatrixXd::Constant(3,3,1.2)) * 50;  
    cout << "m =" << endl << m << endl;  
    VectorXd v(3);                                      //这表示任意大小的(列)向量。
    v << 1, 2, 3;  
    cout << "m * v =" << endl << m * v << endl;
}

#include <iostream>
#include <Eigen/Dense>
using namespace Eigen;
using namespace std;
int main()
{  
    Matrix3d m = Matrix3d::Random();                    //使用Random随机初始化固定大小的3*3的矩阵
    m = (m + Matrix3d::Constant(1.2)) * 50;  
    cout << "m =" << endl << m << endl;  Vector3d v(1,2,3);    
    cout << "m * v =" << endl << m * v << endl;
}

Matrix&Vector

Example 3:

#include <iostream>
#include <Eigen/Dense>
using namespace Eigen;
int main()
{  
    MatrixXd m(2,2);  
    m(0,0) = 3;  
    m(1,0) = 2.5;  
    m(0,1) = -1;  
    m(1,1) = m(1,0) + m(0,1);  
    std::cout << "Here is the matrix m:\n" << m << std::endl;  
    VectorXd v(2);  
    v(0) = 4;  
    v(1) = v(0) - 1;  
    std::cout << "Here is the vector v:\n" << v << std::endl;
}

逗号初始化

Example 4:

Matrix3f m;
m << 1, 2, 3,     4, 5, 6,     7, 8, 9;
std::cout << m;

通过Resize调整矩阵大小

矩阵的当前大小可以通过rows(),cols()和size()检索。 这些方法分别返回行数,列数和系数数。 通过resize()方法调整动态大小矩阵的大小。 
Example 5:

#include <iostream>
#include <Eigen/Dense>
using namespace Eigen;
int main()
{  
    MatrixXd m(2,5);                //初始化大小2*5
    m.resize(4,3);                  //重新调整为4*3
    std::cout << "The matrix m is of size "            << m.rows() << "x" << m.cols() << std::endl;  
    std::cout << "It has " << m.size() << " coefficients" << std::endl;  
    VectorXd v(2);  v.resize(5);  
    std::cout << "The vector v is of size " << v.size() << std::endl;
    std::cout << "As a matrix, v is of size "            << v.rows() << "x" << v.cols() << std::endl;
}

通过赋值调整矩阵大小

Example 6:

MatrixXf a(2, 2); 
std::cout << "a is of size " << a.rows() << "x" << a.cols() << std::endl; 
MatrixXf b(3, 3); 
a = b; 
std::cout << "a is now of size " << a.rows() << "x" << a.cols() << std::endl;

Eigen + - * 等运算

Eigen通过通用的C ++算术运算符(例如+, - ,)或通过特殊方法(如dot(),cross()等)的重载提供矩阵/向量算术运算。对于Matrix类(矩阵和向量) 只被重载以支持线性代数运算。 例如,matrix1 matrix2表示矩阵矩阵乘积。 
Example 7:

#include <iostream>
#include <Eigen/Dense>
using namespace Eigen;
int main()
{  
    Matrix2d a;  a << 1, 2,       3, 4;  
    MatrixXd b(2,2); 
    b << 2, 3,       1, 4; 
    std::cout << "a + b =\n" << a + b << std::endl;
    std::cout << "a - b =\n" << a - b << std::endl; 
    std::cout << "Doing a += b;" << std::endl; 
    a += b;  
    std::cout << "Now a =\n" << a << std::endl; 
    Vector3d v(1,2,3);  
    Vector3d w(1,0,0);  
    std::cout << "-v + w - v =\n" << -v + w - v << std::endl;
}

Example 8:

#include <iostream>
#include <Eigen/Dense>
using namespace Eigen;
int main()
{  
    Matrix2d a;  
    a << 1, 2,       3, 4;  
    Vector3d v(1,2,3);  
    std::cout << "a * 2.5 =\n" << a * 2.5 << std::endl; 
    std::cout << "0.1 * v =\n" << 0.1 * v << std::endl; 
    std::cout << "Doing v *= 2;" << std::endl;  v *= 2; 
    std::cout << "Now v =\n" << v << std::endl;
}

矩阵转置、共轭和伴随矩阵

MatrixXcf a = MatrixXcf::Random(2,2);
cout << "Here is the matrix a\n" << a << endl;
cout << "Here is the matrix a^T\n" << a.transpose() << endl;
cout << "Here is the conjugate of a\n" << a.conjugate() << endl;
cout << "Here is the matrix a^*\n" << a.adjoint() << endl;

禁止如下操作:

a = a.transpose(); // !!! do NOT do this !!!

但是可以使用如下函数:

a.transposeInPlace();

此时a被其转置替换。

#include <iostream>
#include <Eigen/Dense>
using namespace Eigen;
int main()
{
    Matrix2i a;
    a << 1, 2, 3, 4;
    std::cout << "Here is the matrix a:\n" << a << std::endl;
    a = a.transpose(); // !!! do NOT do this !!!
    std::cout << "and the result of the aliasing effect:\n" << a << std::endl;
}

矩阵* 矩阵和矩阵* 向量操作

#include <iostream>
#include <Eigen/Dense>
using namespace Eigen;
int main()
{  
    Matrix2d mat;  mat << 1, 2,         3, 4;  
    Vector2d u(-1,1), v(2,0);  
    std::cout << "Here is mat*mat:\n" << mat*mat << std::endl;  
    std::cout << "Here is mat*u:\n" << mat*u << std::endl;  
    std::cout << "Here is u^T*mat:\n" << u.transpose()*mat << std::endl; 
    std::cout << "Here is u^T*v:\n" << u.transpose()*v << std::endl;
    std::cout << "Here is u*v^T:\n" << u*v.transpose() << std::endl;  
    std::cout << "Let's multiply mat by itself" << std::endl;  
    mat = mat*mat;  std::cout << "Now mat is mat:\n" << mat << std::endl;
}

点乘和叉乘

对于点积和叉乘积,需要使用dot()和cross()方法。

#include <iostream>
#include <Eigen/Dense>
using namespace Eigen;
using namespace std;
int main()
{  
    Vector3d v(1,2,3);  
    Vector3d w(0,1,2); 
    cout << "Dot product: " << v.dot(w) << endl; 
    double dp = v.adjoint()*w; // automatic conversion of the inner product to a scalar  
    cout << "Dot product via a matrix product: " << dp << endl;  
    cout << "Cross product:\n" << v.cross(w) << endl;
}

#include <iostream>
#include <Eigen/Dense>
using namespace std;
int main()
{  
    Eigen::Matrix2d mat;
    mat << 1, 2,         3, 4;
    cout << "Here is mat.sum():       " << mat.sum()       << endl;  
    cout << "Here is mat.prod():      " << mat.prod()      << endl; 
    cout << "Here is mat.mean():      " << mat.mean()      << endl; 
    cout << "Here is mat.minCoeff():  " << mat.minCoeff()  << endl;  
    cout << "Here is mat.maxCoeff():  " << mat.maxCoeff()  << endl; 
    cout << "Here is mat.trace():     " << mat.trace()     << endl;
}

数组的运算(未完待续)
Eigen最小二乘估计

最小平方求解的最好方法是使用SVD分解。 Eigen提供一个作为JacobiSVD类,它的solve()是做最小二乘解。式子为Ax=b 
经过和Matlab对比。

#include <iostream>
#include <Eigen/Dense>
using namespace std;
using namespace Eigen;
int main()
{   
    MatrixXf A = MatrixXf::Random(3, 2);  
    cout << "Here is the matrix A:\n" << A << endl;  
    VectorXf b = VectorXf::Random(3);   
    cout << "Here is the right hand side b:\n" << b << endl;  
    cout << "The least-squares solution is:\n"        << A.jacobiSvd(ComputeThinU | ComputeThinV).solve(b) << endl;
}

这里写图片描述

第二部分:

矩阵、向量初始化

#include <iostream>
#include "Eigen/Dense"
using namespace Eigen;
int main()
{
    MatrixXf m1(3,4);   //动态矩阵,建立3行4列。
    MatrixXf m2(4,3);   //4行3列,依此类推。
    MatrixXf m3(3,3);

    Vector3f v1;        //若是静态数组,则不用指定行或者列
    /* 初始化 */
    Matrix3d m = Matrix3d::Random();
    m1 = MatrixXf::Zero(3,4);       //用0矩阵初始化,要指定行列数
    m2 = MatrixXf::Zero(4,3);
    m3 = MatrixXf::Identity(3,3);   //用单位矩阵初始化
    v1 = Vector3f::Zero();          //同理,若是静态的,不用指定行列数

    m1 << 1,0,0,1,      //也可以以这种方式初始化
        1,5,0,1,
        0,0,9,1;
    m2 << 1,0,0,
        0,4,0,
        0,0,7,
        1,1,1;
    //向量初始化,与矩阵类似
    Vector3d v3(1,2,3);
    VectorXf vx(30);
}

C++数组和矩阵转换

使用Map函数,可以实现Eigen的矩阵和c++中的数组直接转换,语法如下:

//@param MatrixType 矩阵类型
//@param MapOptions 可选参数,指的是指针是否对齐,Aligned, or Unaligned. The default is Unaligned.
//@param StrideType 可选参数,步长
/*
    Map<typename MatrixType,
        int MapOptions,
        typename StrideType>
*/
    int i;
    //数组转矩阵
    double *aMat = new double[20];
    for(i =0;i<20;i++)
    {
        aMat[i] = rand()%11;
    }
    //静态矩阵,编译时确定维数 Matrix<double,4,5> 
    Eigen:Map<Matrix<double,4,5> > staMat(aMat);


    //输出
    for (int i = 0; i < staMat.size(); i++)
        std::cout << *(staMat.data() + i) << " ";
    std::cout << std::endl << std::endl;


    //动态矩阵,运行时确定 MatrixXd
    Map<MatrixXd> dymMat(aMat,4,5);


    //输出,应该和上面一致
    for (int i = 0; i < dymMat.size(); i++)
        std::cout << *(dymMat.data() + i) << " ";
    std::cout << std::endl << std::endl;

    //Matrix中的数据存在一维数组中,默认是行优先的格式,即一行行的存
    //data()返回Matrix中的指针
    dymMat.data();

矩阵基础操作

eigen重载了基础的+ - * / += -= = /= 可以表示标量和矩阵或者矩阵和矩阵

#include <iostream>
#include <Eigen/Dense>
using namespace Eigen;
int main()
{
    //单个取值,单个赋值
    double value00 = staMat(0,0);
    double value10 = staMat(1,0);
    staMat(0,0) = 100;
    std::cout << value00 <<value10<<std::endl;
    std::cout <<staMat<<std::endl<<std::endl;
    //加减乘除示例 Matrix2d 等同于 Matrix<double,2,2>
    Matrix2d a;
     a << 1, 2,
     3, 4;
    MatrixXd b(2,2);
     b << 2, 3,
     1, 4;

    Matrix2d c = a + b;
    std::cout<< c<<std::endl<<std::endl;

    c = a - b;
    std::cout<<c<<std::endl<<std::endl;

    c = a * 2;
    std::cout<<c<<std::endl<<std::endl;

    c = 2.5 * a;
    std::cout<<c<<std::endl<<std::endl;

    c = a / 2;
    std::cout<<c<<std::endl<<std::endl;

    c = a * b;
    std::cout<<c<<std::endl<<std::endl;

点积和叉积

#include <iostream>
#include <Eigen/Dense>
using namespace Eigen;
using namespace std;
int main()
{
    //点积、叉积(针对向量的)
    Vector3d v(1,2,3);
    Vector3d w(0,1,2);
    std::cout<<v.dot(w)<<std::endl<<std::endl;
    std::cout<<w.cross(v)<<std::endl<<std::endl;
}
*/

转置、伴随、行列式、逆矩阵

小矩阵(4 * 4及以下)eigen会自动优化,默认采用LU分解,效率不高

#include <iostream>
#include <Eigen/Dense>
using namespace std;
using namespace Eigen;
int main()
{
    Matrix2d c;
     c << 1, 2,
     3, 4;
    //转置、伴随
    std::cout<<c<<std::endl<<std::endl;
    std::cout<<"转置\n"<<c.transpose()<<std::endl<<std::endl;
    std::cout<<"伴随\n"<<c.adjoint()<<std::endl<<std::endl;
    //逆矩阵、行列式
    std::cout << "行列式: " << c.determinant() << std::endl;
    std::cout << "逆矩阵\n" << c.inverse() << std::endl;
}

计算特征值和特征向量

#include <iostream>
#include <Eigen/Dense>
using namespace std;
using namespace Eigen;
int main()
{
    //特征向量、特征值
    std::cout << "Here is the matrix A:\n" << a << std::endl;
    SelfAdjointEigenSolver<Matrix2d> eigensolver(a);
    if (eigensolver.info() != Success) abort();
     std::cout << "特征值:\n" << eigensolver.eigenvalues() << std::endl;
     std::cout << "Here's a matrix whose columns are eigenvectors of A \n"
     << "corresponding to these eigenvalues:\n"
     << eigensolver.eigenvectors() << std::endl;
}

解线性方程

#include <iostream>
#include <Eigen/Dense>
using namespace std;
using namespace Eigen;
int main()
{
    //线性方程求解 Ax =B;
    Matrix4d A;
    A << 2,-1,-1,1,
        1,1,-2,1,
        4,-6,2,-2,
        3,6,-9,7;

    Vector4d B(2,4,4,9);

    Vector4d x = A.colPivHouseholderQr().solve(B);
    Vector4d x2 = A.llt().solve(B);
    Vector4d x3 = A.ldlt().solve(B);    


    std::cout << "The solution is:\n" << x <<"\n\n"<<x2<<"\n\n"<<x3 <<std::endl;
}

除了colPivHouseholderQr、LLT、LDLT,还有以下的函数可以求解线性方程组,请注意精度和速度: 解小矩阵(4*4)基本没有速度差别

最小二乘求解

最小二乘求解有两种方式,jacobiSvd或者colPivHouseholderQr,4*4以下的小矩阵速度没有区别,jacobiSvd可能更快,大矩阵最好用colPivHouseholderQr

#include <iostream>
#include <Eigen/Dense>
using namespace std;
using namespace Eigen;
int main()
{
    MatrixXf A1 = MatrixXf::Random(3, 2);
    std::cout << "Here is the matrix A:\n" << A1 << std::endl;
    VectorXf b1 = VectorXf::Random(3);
    std::cout << "Here is the right hand side b:\n" << b1 << std::endl;
    //jacobiSvd 方式:Slow (but fast for small matrices)
    std::cout << "The least-squares solution is:\n"
    << A1.jacobiSvd(ComputeThinU | ComputeThinV).solve(b1) << std::endl;
    //colPivHouseholderQr方法:fast
    std::cout << "The least-squares solution is:\n"
    << A1.colPivHouseholderQr().solve(b1) << std::endl;
}

稀疏矩阵

稀疏矩阵的头文件包括:

#include

typedef Eigen::Triplet<double> T;
std::vector<T> tripletList;
triplets.reserve(estimation_of_entries); //estimation_of_entries是预估的条目
for(...)
{
    tripletList.push_back(T(i,j,v_ij));//第 i,j个有值的位置的值
}
SparseMatrixType mat(rows,cols);
mat.setFromTriplets(tripletList.begin(), tripletList.end());
// mat is ready to go!

2.直接将已知的非0值插入

SparseMatrix<double> mat(rows,cols);
mat.reserve(VectorXi::Constant(cols,6));
for(...)
{
    // i,j 个非零值 v_ij != 0
    mat.insert(i,j) = v_ij;
}
mat.makeCompressed(); // optional

稀疏矩阵支持大部分一元和二元运算:

sm1.real() sm1.imag() -sm1 0.5*sm1 
sm1+sm2 sm1-sm2 sm1.cwiseProduct(sm2) 
二元运算中,稀疏矩阵和普通矩阵可以混合使用

//dm表示普通矩阵 
dm2 = sm1 + dm1; 
也支持计算转置矩阵和伴随矩阵

参考以下链接

点击这里跳转查看更多

第三部分:

其他相关博客:

1、单独下载与安装:https://blog.csdn.net/augusdi/article/details/12907341

2、一篇较详细的教程:https://blog.csdn.net/wzaltzap/article/details/79501856

3、计算特征值特征向量:https://blog.csdn.net/wokaowokaowokao12345/article/details/47375427


猜你喜欢

转载自blog.csdn.net/liukunrs/article/details/80884160
今日推荐