pytorch代码实现注意力机制之Flatten Attention

Flatten Attention

介绍:最新注意力Flatten Attention:聚焦的线性注意力机制构建视觉 Transformer
在将 Transformer 模型应用于视觉任务时,自注意力机制 (Self-Attention) 的计算复杂度随序列长度的大小呈二次方关系,给视觉任务的应用带来了挑战。各种各样的线性注意力机制 (Linear Attention) 的计算复杂度随序列长度的大小呈线性关系,可以提供一种更有效的替代方案。线性注意力机制通过精心设计的映射函数来替代 Self-Attention 中的 Softmax 操作,但是这种技术路线要么会面临比较严重的性能下降,要么从映射函数中引入额外的计算开销。

本文作者提出一种聚焦线性注意力机制 (Focused Linear Attention),力求实现高效率和高表达力。作者首先分析了是什么导致了线性注意力机制性能的下降?然后归结为了两个方面:聚焦能力 (Focus Ability) 和特征丰富度 (Feature Diversity),然后提出一个简单而有效的映射函数和一个高效的秩恢复模块来增强自我注意的表达能力,同时保持较低的计算复杂度。

原文地址:FLatten Transformer: Vision Transformer using Focused Linear Attention

Flatten Attention

代码实现

import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial

from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.models.helpers import load_pretrained
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from timm.models.registry import register_model
from einops.layers.torch import Rearrange
import torch.utils.checkpoint as checkpoint
import numpy as np
import time
from einops import rearrange


def _cfg(url='', **kwargs):
    return {
    
    
        'url': url,
        'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
        'crop_pct': .9, 'interpolation': 'bicubic',
        'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
        'first_conv': 'patch_embed.proj', 'classifier': 'head',
        **kwargs
    }


default_cfgs = {
    
    
    'cswin_224': _cfg(),
    'cswin_384': _cfg(
        crop_pct=1.0
    ),

}


class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class LePEAttention(nn.Module):
    def __init__(self, dim, resolution, idx, split_size=7, dim_out=None, num_heads=8, attn_drop=0., proj_drop=0.,
                 qk_scale=None):
        super().__init__()
        self.dim = dim
        self.dim_out = dim_out or dim
        self.resolution = resolution
        self.split_size = split_size
        self.num_heads = num_heads
        head_dim = dim // num_heads
        # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
        self.scale = qk_scale or head_dim ** -0.5
        if idx == -1:
            H_sp, W_sp = self.resolution, self.resolution
        elif idx == 0:
            H_sp, W_sp = self.resolution, self.split_size
        elif idx == 1:
            W_sp, H_sp = self.resolution, self.split_size
        else:
            print("ERROR MODE", idx)
            exit(0)
        self.H_sp = H_sp
        self.W_sp = W_sp
        stride = 1
        self.get_v = nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1, groups=dim)

        self.attn_drop = nn.Dropout(attn_drop)

    def im2cswin(self, x):
        B, N, C = x.shape
        H = W = int(np.sqrt(N))
        x = x.transpose(-2, -1).contiguous().view(B, C, H, W)
        x = img2windows(x, self.H_sp, self.W_sp)
        x = x.reshape(-1, self.H_sp * self.W_sp, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3).contiguous()
        return x

    def get_lepe(self, x, func):
        B, N, C = x.shape
        H = W = int(np.sqrt(N))
        x = x.transpose(-2, -1).contiguous().view(B, C, H, W)

        H_sp, W_sp = self.H_sp, self.W_sp
        x = x.view(B, C, H // H_sp, H_sp, W // W_sp, W_sp)
        x = x.permute(0, 2, 4, 1, 3, 5).contiguous().reshape(-1, C, H_sp, W_sp)  ### B', C, H', W'

        lepe = func(x)  ### B', C, H', W'
        lepe = lepe.reshape(-1, self.num_heads, C // self.num_heads, H_sp * W_sp).permute(0, 1, 3, 2).contiguous()

        x = x.reshape(-1, self.num_heads, C // self.num_heads, self.H_sp * self.W_sp).permute(0, 1, 3, 2).contiguous()
        return x, lepe

    def forward(self, qkv):
        """
        x: B L C
        """
        q, k, v = qkv[0], qkv[1], qkv[2]

        ### Img2Window
        H = W = self.resolution
        B, L, C = q.shape
        assert L == H * W, "flatten img_tokens has wrong size"

        q = self.im2cswin(q)
        k = self.im2cswin(k)
        v, lepe = self.get_lepe(v, self.get_v)

        q = q * self.scale
        attn = (q @ k.transpose(-2, -1))  # B head N C @ B head C N --> B head N N
        attn = nn.functional.softmax(attn, dim=-1, dtype=attn.dtype)
        attn = self.attn_drop(attn)

        x = (attn @ v) + lepe
        x = x.transpose(1, 2).reshape(-1, self.H_sp * self.W_sp, C)  # B head N N @ B head N C

        ### Window2Img
        x = windows2img(x, self.H_sp, self.W_sp, H, W).view(B, -1, C)  # B H' W' C

        return x


class FocusedLinearAttention(nn.Module):
    def __init__(self, dim, resolution, idx, split_size=7, dim_out=None, num_heads=8, attn_drop=0., proj_drop=0.,
                 qk_scale=None, focusing_factor=3, kernel_size=5):
        super().__init__()
        self.dim = dim
        self.dim_out = dim_out or dim
        self.resolution = resolution
        self.split_size = split_size
        self.num_heads = num_heads
        head_dim = dim // num_heads
        # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
        # self.scale = qk_scale or head_dim ** -0.5
        if idx == -1:
            H_sp, W_sp = self.resolution, self.resolution
        elif idx == 0:
            H_sp, W_sp = self.resolution, self.split_size
        elif idx == 1:
            W_sp, H_sp = self.resolution, self.split_size
        else:
            print("ERROR MODE", idx)
            exit(0)
        self.H_sp = H_sp
        self.W_sp = W_sp
        stride = 1
        self.get_v = nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1, groups=dim)

        self.attn_drop = nn.Dropout(attn_drop)

        self.focusing_factor = focusing_factor
        self.dwc = nn.Conv2d(in_channels=head_dim, out_channels=head_dim, kernel_size=kernel_size,
                             groups=head_dim, padding=kernel_size // 2)
        self.scale = nn.Parameter(torch.zeros(size=(1, 1, dim)))
        self.positional_encoding = nn.Parameter(torch.zeros(size=(1, self.H_sp * self.W_sp, dim)))
        print('Linear Attention {}x{} f{} kernel{}'.
              format(H_sp, W_sp, focusing_factor, kernel_size))

    def im2cswin(self, x):
        B, N, C = x.shape
        H = W = int(np.sqrt(N))
        x = x.transpose(-2, -1).contiguous().view(B, C, H, W)
        x = img2windows(x, self.H_sp, self.W_sp)
        # x = x.reshape(-1, self.H_sp * self.W_sp, C).contiguous()
        return x

    def get_lepe(self, x, func):
        B, N, C = x.shape
        H = W = int(np.sqrt(N))
        x = x.transpose(-2, -1).contiguous().view(B, C, H, W)

        H_sp, W_sp = self.H_sp, self.W_sp
        x = x.view(B, C, H // H_sp, H_sp, W // W_sp, W_sp)
        x = x.permute(0, 2, 4, 1, 3, 5).contiguous().reshape(-1, C, H_sp, W_sp)  ### B', C, H', W'

        lepe = func(x)  ### B', C, H', W'
        lepe = lepe.reshape(-1, C // self.num_heads, H_sp * W_sp).permute(0, 2, 1).contiguous()

        x = x.reshape(-1, C, self.H_sp * self.W_sp).permute(0, 2, 1).contiguous()
        return x, lepe

    def forward(self, qkv):
        """
        x: B L C
        """
        q, k, v = qkv[0], qkv[1], qkv[2]

        ### Img2Window
        H = W = self.resolution
        B, L, C = q.shape
        assert L == H * W, "flatten img_tokens has wrong size"

        q = self.im2cswin(q)
        k = self.im2cswin(k)
        v, lepe = self.get_lepe(v, self.get_v)
        # q, k, v = (rearrange(x, "b h n c -> b n (h c)", h=self.num_heads) for x in [q, k, v])

        k = k + self.positional_encoding
        focusing_factor = self.focusing_factor
        kernel_function = nn.ReLU()
        scale = nn.Softplus()(self.scale)
        q = kernel_function(q) + 1e-6
        k = kernel_function(k) + 1e-6
        q = q / scale
        k = k / scale
        q_norm = q.norm(dim=-1, keepdim=True)
        k_norm = k.norm(dim=-1, keepdim=True)
        q = q ** focusing_factor
        k = k ** focusing_factor
        q = (q / q.norm(dim=-1, keepdim=True)) * q_norm
        k = (k / k.norm(dim=-1, keepdim=True)) * k_norm
        q, k, v = (rearrange(x, "b n (h c) -> (b h) n c", h=self.num_heads) for x in [q, k, v])
        i, j, c, d = q.shape[-2], k.shape[-2], k.shape[-1], v.shape[-1]

        z = 1 / (torch.einsum("b i c, b c -> b i", q, k.sum(dim=1)) + 1e-6)
        if i * j * (c + d) > c * d * (i + j):
            kv = torch.einsum("b j c, b j d -> b c d", k, v)
            x = torch.einsum("b i c, b c d, b i -> b i d", q, kv, z)
        else:
            qk = torch.einsum("b i c, b j c -> b i j", q, k)
            x = torch.einsum("b i j, b j d, b i -> b i d", qk, v, z)

        feature_map = rearrange(v, "b (h w) c -> b c h w", h=self.H_sp, w=self.W_sp)
        feature_map = rearrange(self.dwc(feature_map), "b c h w -> b (h w) c")
        x = x + feature_map
        x = x + lepe
        x = rearrange(x, "(b h) n c -> b n (h c)", h=self.num_heads)
        x = windows2img(x, self.H_sp, self.W_sp, H, W).view(B, -1, C)

        return x


class CSWinBlock(nn.Module):
    def __init__(self, dim, reso, num_heads,
                 split_size=7, mlp_ratio=4., qkv_bias=False, qk_scale=None,
                 drop=0., attn_drop=0., drop_path=0.,
                 act_layer=nn.GELU, norm_layer=nn.LayerNorm,
                 last_stage=False,
                 focusing_factor=3, kernel_size=5, attn_type='L'):
        super().__init__()
        self.dim = dim
        self.num_heads = num_heads
        self.patches_resolution = reso
        self.split_size = split_size
        self.mlp_ratio = mlp_ratio
        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.norm1 = norm_layer(dim)

        if self.patches_resolution == split_size:
            last_stage = True
        if last_stage:
            self.branch_num = 1
        else:
            self.branch_num = 2
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(drop)

        assert attn_type in ['L', 'S']
        if attn_type == 'L':
            if last_stage:
                self.attns = nn.ModuleList([
                                               FocusedLinearAttention(
                                                   dim, resolution=self.patches_resolution, idx=-1,
                                                   split_size=split_size, num_heads=num_heads, dim_out=dim,
                                                   qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop,
                                                   focusing_factor=focusing_factor, kernel_size=kernel_size)
                                               for i in range(self.branch_num)])
            else:
                self.attns = nn.ModuleList([
                                               FocusedLinearAttention(
                                                   dim // 2, resolution=self.patches_resolution, idx=i,
                                                   split_size=split_size, num_heads=num_heads // 2, dim_out=dim // 2,
                                                   qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop,
                                                   focusing_factor=focusing_factor, kernel_size=kernel_size)
                                               for i in range(self.branch_num)])
        else:
            if last_stage:
                self.attns = nn.ModuleList([
                                               LePEAttention(
                                                   dim, resolution=self.patches_resolution, idx=-1,
                                                   split_size=split_size, num_heads=num_heads, dim_out=dim,
                                                   qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
                                               for i in range(self.branch_num)])
            else:
                self.attns = nn.ModuleList([
                                               LePEAttention(
                                                   dim // 2, resolution=self.patches_resolution, idx=i,
                                                   split_size=split_size, num_heads=num_heads // 2, dim_out=dim // 2,
                                                   qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
                                               for i in range(self.branch_num)])

        mlp_hidden_dim = int(dim * mlp_ratio)

        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, out_features=dim, act_layer=act_layer,
                       drop=drop)
        self.norm2 = norm_layer(dim)

    def forward(self, x):
        """
        x: B, H*W, C
        """

        H = W = self.patches_resolution
        B, L, C = x.shape
        assert L == H * W, "flatten img_tokens has wrong size"
        img = self.norm1(x)
        qkv = self.qkv(img).reshape(B, -1, 3, C).permute(2, 0, 1, 3)

        if self.branch_num == 2:
            x1 = self.attns[0](qkv[:, :, :, :C // 2])
            x2 = self.attns[1](qkv[:, :, :, C // 2:])
            attened_x = torch.cat([x1, x2], dim=2)
        else:
            attened_x = self.attns[0](qkv)
        attened_x = self.proj(attened_x)
        x = x + self.drop_path(attened_x)
        x = x + self.drop_path(self.mlp(self.norm2(x)))

        return x


def img2windows(img, H_sp, W_sp):
    """
    img: B C H W
    """
    B, C, H, W = img.shape
    img_reshape = img.view(B, C, H // H_sp, H_sp, W // W_sp, W_sp)
    img_perm = img_reshape.permute(0, 2, 4, 3, 5, 1).contiguous().reshape(-1, H_sp * W_sp, C)
    return img_perm


def windows2img(img_splits_hw, H_sp, W_sp, H, W):
    """
    img_splits_hw: B' H W C
    """
    B = int(img_splits_hw.shape[0] / (H * W / H_sp / W_sp))

    img = img_splits_hw.view(B, H // H_sp, W // W_sp, H_sp, W_sp, -1)
    img = img.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
    return img


class Merge_Block(nn.Module):
    def __init__(self, dim, dim_out, norm_layer=nn.LayerNorm):
        super().__init__()
        self.conv = nn.Conv2d(dim, dim_out, 3, 2, 1)
        self.norm = norm_layer(dim_out)

    def forward(self, x):
        B, new_HW, C = x.shape
        H = W = int(np.sqrt(new_HW))
        x = x.transpose(-2, -1).contiguous().view(B, C, H, W)
        x = self.conv(x)
        B, C = x.shape[:2]
        x = x.view(B, C, -1).transpose(-2, -1).contiguous()
        x = self.norm(x)

        return x


class CSWinTransformer(nn.Module):
    """ Vision Transformer with support for patch or hybrid CNN input stage
    """

    def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=96, depth=[2, 2, 6, 2],
                 split_size=[1, 2, 7, 7], la_split_size='1-2-7-7',
                 num_heads=[2, 4, 8, 16], mlp_ratio=4., qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
                 drop_path_rate=0., hybrid_backbone=None, norm_layer=nn.LayerNorm, use_chk=False,
                 focusing_factor=3, kernel_size=5, attn_type='LLLL'):
        super().__init__()

        # split_size = [1, 2, img_size // 32, img_size // 32]
        la_split_size = la_split_size.split('-')

        self.use_chk = use_chk
        self.num_classes = num_classes
        self.num_features = self.embed_dim = embed_dim  # num_features for consistency with other models
        heads = num_heads

        self.stage1_conv_embed = nn.Sequential(
            nn.Conv2d(in_chans, embed_dim, 7, 4, 2),
            Rearrange('b c h w -> b (h w) c', h=img_size // 4, w=img_size // 4),
            nn.LayerNorm(embed_dim)
        )

        curr_dim = embed_dim
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, np.sum(depth))]  # stochastic depth decay rule
        attn_types = [(attn_type[0] if attn_type[0] != 'M' else ('L' if i < int(attn_type[4:]) else 'S')) for i in range(depth[0])]
        split_sizes = [(int(la_split_size[0]) if attn_types[i] == 'L' else split_size[0]) for i in range(depth[0])]
        self.stage1 = nn.ModuleList([
                                        CSWinBlock(
                                            dim=curr_dim, num_heads=heads[0], reso=img_size // 4, mlp_ratio=mlp_ratio,
                                            qkv_bias=qkv_bias, qk_scale=qk_scale,
                                            split_size=split_sizes[i],
                                            drop=drop_rate, attn_drop=attn_drop_rate,
                                            drop_path=dpr[i], norm_layer=norm_layer,
                                            focusing_factor=focusing_factor, kernel_size=kernel_size,
                                            attn_type=attn_types[i])
                                        for i in range(depth[0])])

        self.merge1 = Merge_Block(curr_dim, curr_dim * 2)
        curr_dim = curr_dim * 2
        attn_types = [(attn_type[1] if attn_type[1] != 'M' else ('L' if i < int(attn_type[4:]) else 'S')) for i in range(depth[1])]
        split_sizes = [(int(la_split_size[1]) if attn_types[i] == 'L' else split_size[1]) for i in range(depth[1])]
        self.stage2 = nn.ModuleList(
            [CSWinBlock(
                dim=curr_dim, num_heads=heads[1], reso=img_size // 8, mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias, qk_scale=qk_scale,
                split_size=split_sizes[i],
                drop=drop_rate, attn_drop=attn_drop_rate,
                drop_path=dpr[np.sum(depth[:1]) + i], norm_layer=norm_layer,
                focusing_factor=focusing_factor, kernel_size=kernel_size,
                attn_type=attn_types[i])
             for i in range(depth[1])])

        self.merge2 = Merge_Block(curr_dim, curr_dim * 2)
        curr_dim = curr_dim * 2
        attn_types = [(attn_type[2] if attn_type[2] != 'M' else ('L' if i < int(attn_type[4:]) else 'S')) for i in range(depth[2])]
        split_sizes = [(int(la_split_size[2]) if attn_types[i] == 'L' else split_size[2]) for i in range(depth[2])]
        temp_stage3 = []
        temp_stage3.extend(
            [CSWinBlock(
                dim=curr_dim, num_heads=heads[2], reso=img_size // 16, mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias, qk_scale=qk_scale,
                split_size=split_sizes[i],
                drop=drop_rate, attn_drop=attn_drop_rate,
                drop_path=dpr[np.sum(depth[:2]) + i], norm_layer=norm_layer,
                focusing_factor=focusing_factor, kernel_size=kernel_size,
                attn_type=attn_types[i])
             for i in range(depth[2])])

        self.stage3 = nn.ModuleList(temp_stage3)

        self.merge3 = Merge_Block(curr_dim, curr_dim * 2)
        curr_dim = curr_dim * 2
        attn_types = [(attn_type[3] if attn_type[3] != 'M' else ('L' if i < int(attn_type[4:]) else 'S')) for i in range(depth[3])]
        split_sizes = [(int(la_split_size[3]) if attn_types[i] == 'L' else split_size[3]) for i in range(depth[3])]
        self.stage4 = nn.ModuleList(
            [CSWinBlock(
                dim=curr_dim, num_heads=heads[3], reso=img_size // 32, mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias, qk_scale=qk_scale,
                split_size=split_sizes[i],
                drop=drop_rate, attn_drop=attn_drop_rate,
                drop_path=dpr[np.sum(depth[:-1]) + i], norm_layer=norm_layer, last_stage=True,
                focusing_factor=focusing_factor, kernel_size=kernel_size,
                attn_type=attn_types[i])
             for i in range(depth[-1])])

        self.norm = norm_layer(curr_dim)
        # Classifier head
        self.head = nn.Linear(curr_dim, num_classes) if num_classes > 0 else nn.Identity()

        trunc_normal_(self.head.weight, std=0.02)
        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, (nn.LayerNorm, nn.BatchNorm2d)):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {
    
    'pos_embed', 'cls_token'}

    def get_classifier(self):
        return self.head

    def reset_classifier(self, num_classes, global_pool=''):
        if self.num_classes != num_classes:
            print('reset head to', num_classes)
            self.num_classes = num_classes
            self.head = nn.Linear(self.out_dim, num_classes) if num_classes > 0 else nn.Identity()
            self.head = self.head.cuda()
            trunc_normal_(self.head.weight, std=.02)
            if self.head.bias is not None:
                nn.init.constant_(self.head.bias, 0)

    def forward_features(self, x):
        B = x.shape[0]
        x = self.stage1_conv_embed(x)
        for blk in self.stage1:
            if self.use_chk:
                x = checkpoint.checkpoint(blk, x)
            else:
                x = blk(x)
        for pre, blocks in zip([self.merge1, self.merge2, self.merge3],
                               [self.stage2, self.stage3, self.stage4]):
            x = pre(x)
            for blk in blocks:
                if self.use_chk:
                    x = checkpoint.checkpoint(blk, x)
                else:
                    x = blk(x)
        x = self.norm(x)
        return torch.mean(x, dim=1)

    def forward(self, x):
        x = self.forward_features(x)
        x = self.head(x)
        return x


def _conv_filter(state_dict, patch_size=16):
    """ convert patch embedding weight from manual patchify + linear proj to conv"""
    out_dict = {
    
    }
    for k, v in state_dict.items():
        if 'patch_embed.proj.weight' in k:
            v = v.reshape((v.shape[0], 3, patch_size, patch_size))
        out_dict[k] = v
    return out_dict


### 224 models

def FLatten_CSWin_64_24181_tiny_224(pretrained=False, **kwargs):
    model = CSWinTransformer(patch_size=4, embed_dim=64, depth=[2, 4, 18, 1],
                             split_size=[1, 2, 7, 7], num_heads=[2, 4, 8, 16], mlp_ratio=4., **kwargs)
    model.default_cfg = default_cfgs['cswin_224']
    return model


def FLatten_CSWin_64_24322_small_224(pretrained=False, **kwargs):
    model = CSWinTransformer(patch_size=4, embed_dim=64, depth=[2, 4, 32, 2],
                             split_size=[1, 2, 7, 7], num_heads=[2, 4, 8, 16], mlp_ratio=4., **kwargs)
    model.default_cfg = default_cfgs['cswin_224']
    return model


def FLatten_CSWin_96_36292_base_224(pretrained=False, **kwargs):
    model = CSWinTransformer(patch_size=4, embed_dim=96, depth=[3, 6, 29, 2],
                             split_size=[1, 2, 7, 7], num_heads=[4, 8, 16, 32], mlp_ratio=4., **kwargs)
    model.default_cfg = default_cfgs['cswin_224']
    return model


### 384 models


def FLatten_CSWin_96_36292_base_384(pretrained=False, **kwargs):
    model = CSWinTransformer(patch_size=4, embed_dim=96, depth=[3, 6, 29, 2],
                             split_size=[1, 2, 12, 12], num_heads=[4, 8, 16, 32], mlp_ratio=4., **kwargs)
    model.default_cfg = default_cfgs['cswin_384']
    return model

猜你喜欢

转载自blog.csdn.net/DM_zx/article/details/134347678