机器学习各个算法3--SVM

简化版本的SMO

相关函数

from numpy import *
from time import sleep

def loadDataSet(fileName):   #得到类标签和数据矩阵
    dataMat = []; labelMat = []
    fr = open(fileName)
    for line in fr.readlines():
        lineArr = line.strip().split('\t')
        dataMat.append([float(lineArr[0]), float(lineArr[1])])
        labelMat.append(float(lineArr[2]))
    return dataMat,labelMat

def selectJrand(i,m):  #i是第一个alpha的下标,m是所有alpha的数量,确保i和j是不一样的
    j=i #we want to select any J not equal to i
    while (j==i):
        j = int(random.uniform(0,m))
    return j

def clipAlpha(aj,H,L):  #用于调整alpha的值
    if aj > H: 
        aj = H
    if L > aj:
        aj = L
    return aj

def smoSimple(dataMatIn, classLabels, C, toler, maxIter):   #SMO的一个有效的简化版本
    dataMatrix = mat(dataMatIn); labelMat = mat(classLabels).transpose()
    b = 0; m,n = shape(dataMatrix)
    alphas = mat(zeros((m,1)))
    iter = 0
    while (iter < maxIter):
        alphaPairsChanged = 0
        for i in range(m):
            fXi = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[i,:].T)) + b    #预测类别
            Ei = fXi - float(labelMat[i])#if checks if an example violates KKT condition 计算误差
            if ((labelMat[i]*Ei < -toler) and (alphas[i] < C)) or ((labelMat[i]*Ei > toler) and (alphas[i] > 0)):
                j = selectJrand(i,m)
                fXj = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[j,:].T)) + b
                Ej = fXj - float(labelMat[j])
                alphaIold = alphas[i].copy(); alphaJold = alphas[j].copy();
                if (labelMat[i] != labelMat[j]):
                    L = max(0, alphas[j] - alphas[i])
                    H = min(C, C + alphas[j] - alphas[i])
                else:
                    L = max(0, alphas[j] + alphas[i] - C)
                    H = min(C, alphas[j] + alphas[i])
                if L==H: print "L==H"; continue
                eta = 2.0 * dataMatrix[i,:]*dataMatrix[j,:].T - dataMatrix[i,:]*dataMatrix[i,:].T - dataMatrix[j,:]*dataMatrix[j,:].T  #alpha的最优修改量
                if eta >= 0: print "eta>=0"; continue
                alphas[j] -= labelMat[j]*(Ei - Ej)/eta
                alphas[j] = clipAlpha(alphas[j],H,L)
                if (abs(alphas[j] - alphaJold) < 0.00001): print "j not moving enough"; continue
                alphas[i] += labelMat[j]*labelMat[i]*(alphaJold - alphas[j])#update i by the same amount as j
                                                                        #the update is in the oppostie direction
                b1 = b - Ei- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[i,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[i,:]*dataMatrix[j,:].T
                b2 = b - Ej- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[j,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[j,:]*dataMatrix[j,:].T
                if (0 < alphas[i]) and (C > alphas[i]): b = b1
                elif (0 < alphas[j]) and (C > alphas[j]): b = b2
                else: b = (b1 + b2)/2.0
                alphaPairsChanged += 1
                print "iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)
        if (alphaPairsChanged == 0): iter += 1
        else: iter = 0
        print "iteration number: %d" % iter
    return b,alphas

测试代码

import svmMLiA
from numpy import *
dataArr, labelArr = svmMLiA.loadDataSet('testSet.txt')
# print labelArr
b, alphas = svmMLiA.smoSimple(dataArr, labelArr, 0.6, 0.001, 40)
print b
print alphas[alphas>0]
print shape(alphas[alphas>0])
for i in range(100):
    if alphas[i]>0.0: print dataArr[i], labelArr[i]
结果

j not moving enough
iteration number: 39
j not moving enough
j not moving enough
iteration number: 40
[[-3.78661581]]---------------------------------------b的值
[[ 0.14237008  0.19622369  0.02570131  0.36429508]]---------------alpha的值
(1L, 4L)
[4.658191, 3.507396] -1.0 ----------------------------------4个支持向量
[3.457096, -0.082216] -1.0
[2.893743, -1.643468] -1.0
[6.080573, 0.418886] 1.0


利用完整platt SMO算法加速优化

相关函数

class optStruct:         #建立一个数据结构
    def __init__(self,dataMatIn, classLabels, C, toler, kTup):  # Initialize the structure with the parameters 
        self.X = dataMatIn
        self.labelMat = classLabels
        self.C = C
        self.tol = toler
        self.m = shape(dataMatIn)[0]
        self.alphas = mat(zeros((self.m,1)))
        self.b = 0
        self.eCache = mat(zeros((self.m,2))) #first column is valid flag
        self.K = mat(zeros((self.m,self.m)))
        for i in range(self.m):
            self.K[:,i] = kernelTrans(self.X, self.X[i,:], kTup)
        
def calcEk(oS, k):  #计算E值
    fXk = float(multiply(oS.alphas,oS.labelMat).T*oS.K[:,k] + oS.b)
    Ek = fXk - float(oS.labelMat[k])
    return Ek
        
def selectJ(i, oS, Ei):         #this is the second choice -heurstic, and calcs Ej 
    maxK = -1; maxDeltaE = 0; Ej = 0
    oS.eCache[i] = [1,Ei]  #set valid #choose the alpha that gives the maximum delta E
    validEcacheList = nonzero(oS.eCache[:,0].A)[0]
    if (len(validEcacheList)) > 1:
        for k in validEcacheList:   #loop through valid Ecache values and find the one that maximizes delta E
            if k == i: continue #don't calc for i, waste of time
            Ek = calcEk(oS, k)
            deltaE = abs(Ei - Ek)
            if (deltaE > maxDeltaE):
                maxK = k; maxDeltaE = deltaE; Ej = Ek
        return maxK, Ej
    else:   #in this case (first time around) we don't have any valid eCache values
        j = selectJrand(i, oS.m)
        Ej = calcEk(oS, j)
    return j, Ej

def updateEk(oS, k):#after any alpha has changed update the new value in the cache
    Ek = calcEk(oS, k)
    oS.eCache[k] = [1,Ek]
        
def innerL(i, oS):   #完整SMO算法中的优化例程
    Ei = calcEk(oS, i)
    if ((oS.labelMat[i]*Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i]*Ei > oS.tol) and (oS.alphas[i] > 0)):
        j,Ej = selectJ(i, oS, Ei) #this has been changed from selectJrand
        alphaIold = oS.alphas[i].copy(); alphaJold = oS.alphas[j].copy();
        if (oS.labelMat[i] != oS.labelMat[j]):
            L = max(0, oS.alphas[j] - oS.alphas[i])
            H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
        else:
            L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)
            H = min(oS.C, oS.alphas[j] + oS.alphas[i])
        if L==H: print "L==H"; return 0
        eta = 2.0 * oS.K[i,j] - oS.K[i,i] - oS.K[j,j] #changed for kernel
        if eta >= 0: print "eta>=0"; return 0
        oS.alphas[j] -= oS.labelMat[j]*(Ei - Ej)/eta
        oS.alphas[j] = clipAlpha(oS.alphas[j],H,L)
        updateEk(oS, j) #added this for the Ecache
        if (abs(oS.alphas[j] - alphaJold) < 0.00001): print "j not moving enough"; return 0
        oS.alphas[i] += oS.labelMat[j]*oS.labelMat[i]*(alphaJold - oS.alphas[j])#update i by the same amount as j
        updateEk(oS, i) #added this for the Ecache                    #the update is in the oppostie direction
        b1 = oS.b - Ei- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,i] - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[i,j]
        b2 = oS.b - Ej- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,j]- oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[j,j]
        if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]): oS.b = b1
        elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]): oS.b = b2
        else: oS.b = (b1 + b2)/2.0
        return 1
    else: return 0

def smoP(dataMatIn, classLabels, C, toler, maxIter,kTup=('lin', 0)):    #full Platt SMO
    oS = optStruct(mat(dataMatIn),mat(classLabels).transpose(),C,toler, kTup)
    iter = 0
    entireSet = True; alphaPairsChanged = 0
    while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):
        alphaPairsChanged = 0
        if entireSet:   #go over all
            for i in range(oS.m):        
                alphaPairsChanged += innerL(i,oS)
                print "fullSet, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)
            iter += 1
        else:#go over non-bound (railed) alphas
            nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]
            for i in nonBoundIs:
                alphaPairsChanged += innerL(i,oS)
                print "non-bound, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)
            iter += 1
        if entireSet: entireSet = False #toggle entire set loop
        elif (alphaPairsChanged == 0): entireSet = True  
        print "iteration number: %d" % iter
    return oS.b,oS.alphas
def calcWs(alphas,dataArr,classLabels):  #根据alphas计算W
    X = mat(dataArr); labelMat = mat(classLabels).transpose()
    m,n = shape(X)
    w = zeros((n,1))
    for i in range(m):
        w += multiply(alphas[i]*labelMat[i],X[i,:].T)
    return w

测试代码

import svmMLiA
from numpy import *
dataArr, labelArr = svmMLiA.loadDataSet('testSet.txt')
# print labelArr
# b, alphas = svmMLiA.smoSimple(dataArr, labelArr, 0.6, 0.001, 40)
# print b
# print alphas[alphas>0]
# print shape(alphas[alphas>0])
# for i in range(100):
#     if alphas[i]>0.0: print dataArr[i], labelArr[i]
    
#测试完整版的smo算法
b, alphas = svmMLiA.smoP(dataArr, labelArr, 0.6, 0.001, 40)
print b
print alphas[alphas>0]
print shape(alphas[alphas>0])
for i in range(100):
    if alphas[i]>0.0: print dataArr[i], labelArr[i]
#测试完整版的smo算法
b, alphas = svmMLiA.smoP(dataArr, labelArr, 0.6, 0.001, 40)
print b
print alphas[alphas>0]
print shape(alphas[alphas>0])
for i in range(100):
    if alphas[i]>0.0: print dataArr[i], labelArr[i]
ws = svmMLiA.calcWs(alphas,dataArr,labelArr)
print ws
#现在进行分类
dataMat = mat(dataArr)
print dataMat[0]*mat(ws)+b
print labelArr[0]
print dataMat[1]*mat(ws)+b
print labelArr[1]
print dataMat[2]*mat(ws)+b
print labelArr[2]

结果:

fullSet, iter: 2 i:91, pairs changed 0
fullSet, iter: 2 i:92, pairs changed 0
fullSet, iter: 2 i:93, pairs changed 0
L==H
fullSet, iter: 2 i:94, pairs changed 0
j not moving enough
fullSet, iter: 2 i:95, pairs changed 0
L==H
fullSet, iter: 2 i:96, pairs changed 0
L==H
fullSet, iter: 2 i:97, pairs changed 0
fullSet, iter: 2 i:98, pairs changed 0
fullSet, iter: 2 i:99, pairs changed 0
iteration number: 3
[[-2.3194761]]
[[ 0.09390371  0.05876873  0.02162722  0.00526142  0.01900464  0.01900464
   0.01876918  0.02336781  0.02336781]]
(1L, 9L)
[3.542485, 1.977398] -1.0
[8.127113, 1.274372] 1.0
[7.108772, -0.986906] 1.0
[3.634009, 1.730537] -1.0
[3.223038, -0.552392] -1.0
[7.40786, -0.121961] 1.0
[5.286862, -2.358286] 1.0
[6.080573, 0.418886] 1.0
[1.966279, -1.840439] -1.0
[[ 0.55449368]
 [-0.12452835]]
[[-0.60143267]]
-1.0
[[-0.96386361]]
-1.0
[[ 2.06454697]]
1.0


核函数

相关函数

def testRbf(k1=1.3):    #在测试中使用核函数
    dataArr,labelArr = loadDataSet('testSetRBF.txt')
    b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, ('rbf', k1)) #C=200 important
    datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
    svInd=nonzero(alphas.A>0)[0]
    sVs=datMat[svInd] #get matrix of only support vectors
    labelSV = labelMat[svInd];
    print "there are %d Support Vectors" % shape(sVs)[0]
    m,n = shape(datMat)
    errorCount = 0
    for i in range(m):
        kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1))
        predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
        if sign(predict)!=sign(labelArr[i]): errorCount += 1
    print "the training error rate is: %f" % (float(errorCount)/m)
    dataArr,labelArr = loadDataSet('testSetRBF2.txt')
    errorCount = 0
    datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
    m,n = shape(datMat)
    for i in range(m):
        kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1))
        predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
        if sign(predict)!=sign(labelArr[i]): errorCount += 1    
    print "the test error rate is: %f" % (float(errorCount)/m)   

测试代码

#在复杂数据上应用核函数
svmMLiA.testRbf()

结果

fullSet, iter: 3 i:94, pairs changed 0
fullSet, iter: 3 i:95, pairs changed 0
fullSet, iter: 3 i:96, pairs changed 0
fullSet, iter: 3 i:97, pairs changed 0
fullSet, iter: 3 i:98, pairs changed 0
fullSet, iter: 3 i:99, pairs changed 0
iteration number: 4
there are 20 Support Vectors
the training error rate is: 0.040000
the test error rate is: 0.040000


手写识别问题

相关函数

def img2vector(filename):
    returnVect = zeros((1,1024))
    fr = open(filename)
    for i in range(32):
        lineStr = fr.readline()
        for j in range(32):
            returnVect[0,32*i+j] = int(lineStr[j])
    return returnVect

def loadImages(dirName):    
    from os import listdir
    hwLabels = []
    trainingFileList = listdir(dirName)           #load the training set
    m = len(trainingFileList)
    trainingMat = zeros((m,1024))
    for i in range(m):
        fileNameStr = trainingFileList[i]
        fileStr = fileNameStr.split('.')[0]     #take off .txt
        classNumStr = int(fileStr.split('_')[0])
        if classNumStr == 9: hwLabels.append(-1)
        else: hwLabels.append(1)
        trainingMat[i,:] = img2vector('%s/%s' % (dirName, fileNameStr))
    return trainingMat, hwLabels    

def testDigits(kTup=('rbf', 10)):
    dataArr,labelArr = loadImages('trainingDigits')
    b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, kTup)
    datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
    svInd=nonzero(alphas.A>0)[0]
    sVs=datMat[svInd] 
    labelSV = labelMat[svInd];
    print "there are %d Support Vectors" % shape(sVs)[0]
    m,n = shape(datMat)
    errorCount = 0
    for i in range(m):
        kernelEval = kernelTrans(sVs,datMat[i,:],kTup)
        predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
        if sign(predict)!=sign(labelArr[i]): errorCount += 1
    print "the training error rate is: %f" % (float(errorCount)/m)
    dataArr,labelArr = loadImages('testDigits')
    errorCount = 0
    datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
    m,n = shape(datMat)
    for i in range(m):
        kernelEval = kernelTrans(sVs,datMat[i,:],kTup)
        predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
        if sign(predict)!=sign(labelArr[i]): errorCount += 1    
    print "the test error rate is: %f" % (float(errorCount)/m) 

测试代码

#手写识别
svmMLiA.testDigits(('rbf',50))

结果

fullSet, iter: 5 i:398, pairs changed 0
L==H
fullSet, iter: 5 i:399, pairs changed 0
fullSet, iter: 5 i:400, pairs changed 0
j not moving enough
fullSet, iter: 5 i:401, pairs changed 0
iteration number: 6
there are 402 samples,there are 34 Support Vectors
the training error rate is: 0.014925
the test error rate is: 0.010753




猜你喜欢

转载自blog.csdn.net/qq_28088259/article/details/79194591
今日推荐