大模型强化学习之奖励模型的训练

在之前的博客召唤神龙打造自己的ChatGPT_gzroy的博客-CSDN博客中,我介绍了如何用有监督微调训练(SFT)来训练一个GPT 2的模型,使得模型具备对话问答的能力。在OpenAI的InstructGPT论文中,SFT是训练的第一步,第二步是训练一个奖励模型,使得可以根据人类的偏好来对模型的回答进行评分,然后在第三步就可以通过强化学习的方式,通过奖励模型给出的奖励来对模型进行进一步的训练,使得模型能满足安全性,可控性等方面的要求。这篇文章我将介绍如何训练一个奖励模型。

数据集的准备

在InstructGPT论文中,OpenAI介绍了如何准备数据,通过第一步的SFT模型,准备一批提示语,对于每个提示语,模型都生成多个回答,例如生成9个回答。然后人工对这9个回答的质量进行排序。之所以不是人工直接对这9个回答进行评分,是因为每个人对于回答的评分标准都不同,然而大家对于那个回答质量更高是比较容易得到统一的,因此采取排序的方式。获得了排序之后,我们就可以计算这个pair-wise的loss值,即把回答两两比较,其得分之间的差距应该足够大。例如对于回答A和回答B,A的质量比B的要高,那么我们可以用以下公式表示这两个回答之间的质量差值,其中x表示prompt, y表示对应的回答:

\log \left ( \sigma \left ( r_{\theta} \left ( x,y_{a } \right )-r_{\theta} \left ( x,y_{b } \right )\right ) \right )

如果我们有9个回答,那么两两配对之后总共有\binom{k}{2}个,k=9,总共36个配对。因此总的loss值为:

loss\left ( \theta \right )=-\frac{1}{\binom{k}{2}}E_{\left ( x,y_{a},y_{b}^{}\right )\sim D}\left [ \log \left ( r_{\theta \left ( x,y_{a} \right )} -r_{\theta \left ( x,y_{b} \right )}\right ) \right ]

对这个loss值进行最小化,即代表模型能最大限度的区分质量好和质量差的回答之间的评分。

OpenAI并没有开放相关的数据集,另外人工对回答进行排序也是比较耗时的工作,因此这里我打算用一些开源的数据集来完成这个奖励模型的训练。在Huggingface有一个Anthropic公司提供的一个数据集,Anthropic/hh-rlhf · Datasets at Hugging Face,这个公司的员工也是从OpenAI出来的,因为不满OpenAI对技术的不开放而成立的一个新公司。在这个数据集里面提供了chosen和rejected两个字段,分别代表对于一个Prompt的质量好和质量差的回答,我们可以利用这个数据集来进行训练。

以下代码是对这个数据集进行一些数据转换,把里面的human和assistant分别替换为prompt和response,因为在我之前SFT训练的模型是采用这种格式来进行训练的,另外就是在数据的末尾增加一个<|endoftext|>的token,代码如下:

from datasets import load_from_disk
import re
from tqdm import trange
from transformers import GPT2Tokenizer
import pickle

regex_human = re.compile(r'(\nHuman:)+')
regex_assistant = re.compile(r'(\nAssistant:)+')

tokenizer = GPT2Tokenizer.from_pretrained("gpt2")

ds = load_from_disk('rlhf')

train_data = []
for i in trange(ds['train'].__len__()):
    chosen = ds['train'][i]['chosen']
    rejected = ds['train'][i]['rejected']
    chosen = re.sub(regex_human, '### Prompt:', chosen)
    chosen = re.sub(regex_assistant, '### Response:', chosen)
    chosen += '<|endoftext|>'
    rejected = re.sub(regex_human, '### Prompt:', rejected)
    rejected = re.sub(regex_assistant, '### Response:', rejected)
    rejected += '<|endoftext|>'
    chosen_ids = tokenizer.encode(chosen)
    rejected_ids = tokenizer.encode(rejected)
    train_data.append((chosen_ids, rejected_ids))

with open('reward_train.pkl', 'wb') as f:
    pickle.dump(train_data, f)

test_data = []
for i in trange(ds['test'].__len__()):
    chosen = ds['test'][i]['chosen']
    rejected = ds['test'][i]['rejected']
    chosen = re.sub(regex_human, '### Prompt:', chosen)
    chosen = re.sub(regex_assistant, '### Response:', chosen)
    chosen += '<|endoftext|>'
    rejected = re.sub(regex_human, '### Prompt:', rejected)
    rejected = re.sub(regex_assistant, '### Response:', rejected)
    rejected += '<|endoftext|>'
    chosen_ids = tokenizer.encode(chosen)
    rejected_ids = tokenizer.encode(rejected)
    test_data.append((chosen_ids, rejected_ids))

with open('reward_test.pkl', 'wb') as f:
    pickle.dump(test_data, f)

建立奖励模型

按照InstructGPT论文的介绍,奖励模型最好基于SFT模型来构造,因此我这里也是采用同样的方式,基于之前训练好的SFT模型来进行训练。为了能够根据输入的文字得出一个分值,需要在原有模型的基础上,去掉最后的(hidden_dim, vocab_size)的线性变换层,改为添加一个维度为(hidden_dim, 1)的线性变换层,从而将模型输出的隐变量映射为一个分值。

以下代码是参照GPT 2模型的结构来定义一个奖励模型:

import torch
from torch import nn
from torch.nn import functional as F
import math
import inspect

class MHA(nn.Module):
    def __init__(self, d_model, num_heads, attn_pdrop, resid_pdrop):
        super().__init__()
        self.d_model = d_model
        self.num_heads = num_heads
        self.attn_pdrop = attn_pdrop
        self.resid_dropout = nn.Dropout(resid_pdrop)
        self.c_attn = nn.Linear(d_model, d_model*3)
        self.c_proj = nn.Linear(d_model, d_model)

    def forward(self, x, attn_mask):
        B, T, C = x.size()
        x_qkv = self.c_attn(x)
        q, k, v = x_qkv.split(self.d_model, dim=2)
        q = q.view(B, T, self.num_heads, C//self.num_heads).transpose(1, 2)
        k = k.view(B, T, self.num_heads, C//self.num_heads).transpose(1, 2)
        v = v.view(B, T, self.num_heads, C//self.num_heads).transpose(1, 2)
        y = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask, dropout_p=self.attn_pdrop if self.training else 0, is_causal=True)
        y = y.transpose(1, 2).contiguous().view(B, T, C)
        y = self.c_proj(y)
        y = self.resid_dropout(y)
        return y

class FeedForward(nn.Module):
    def __init__(self, d_model, dff, dropout):
        super().__init__()
        self.c_fc = nn.Linear(d_model, dff)
        self.c_proj = nn.Linear(dff, d_model)
        self.dropout = nn.Dropout(dropout)
        self.gelu = nn.GELU()

    def forward(self, x):
        x = self.c_fc(x)
        x = self.gelu(x)
        x = self.c_proj(x)
        x = self.dropout(x)
        return x
    
class Block(nn.Module):
    def __init__(self, d_model, num_heads, dff, attn_pdrop, resid_pdrop, dropout):
        super().__init__()
        self.ln_1 = nn.LayerNorm(d_model)
        self.attn = MHA(d_model, num_heads, attn_pdrop, resid_pdrop)
        self.ln_2 = nn.LayerNorm(d_model)
        self.mlp = FeedForward(d_model, dff, dropout)

    def forward(self, x, attn_mask):
        x = x + self.attn(self.ln_1(x), attn_mask)
        x = x + self.mlp(self.ln_2(x))
        return x

class RewardModel(nn.Module):
    def __init__(self, vocab_size, d_model, block_size, embed_pdrop, num_heads, dff, attn_pdrop, resid_pdrop, dropout, num_layer):
        super().__init__()
        self.wte = nn.Embedding(vocab_size, d_model, sparse=False)
        self.wpe = nn.Embedding(block_size, d_model, sparse=False)
        self.dropout_embed = nn.Dropout(embed_pdrop)
        self.h = nn.ModuleList([Block(d_model, num_heads, dff, attn_pdrop, resid_pdrop, dropout) for _ in range(num_layer)])
        self.num_layer = num_layer
        self.block_size = block_size
        #self.lm_head = nn.Linear(d_model, vocab_size, bias=False)
        #self.wte.weight = self.lm_head.weight
        self.reward_head = nn.Linear(d_model, 1, bias=False)
        self.ln_f = nn.LayerNorm(d_model)
        self.PAD_ID = vocab_size - 1

        self.apply(self._init_weights)

        # apply special scaled init to the residual projections, per GPT-2 paper
        for pn, p in self.named_parameters():
            if pn.endswith('c_proj.weight'):
                torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * num_layer))

    def _init_weights(self, module):
        if isinstance(module, nn.Linear):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
            if module.bias is not None:
                torch.nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)

    def forward(self, input_ids, reward_pos, attn_mask, return_loss=False):
        device = input_ids.device
        b, t = input_ids.size()
        pos = torch.arange(0, t, dtype=torch.long, device=device) 
        x = self.wte(input_ids) + self.wpe(pos)
        x = self.dropout_embed(x)
        for block in self.h:
            x = block(x, attn_mask)
        x = self.ln_f(x)
        rewards = self.reward_head(x).squeeze(-1)
        #x = torch.reshape(x, [b,t])
        #scores = torch.gather(x, dim=-1, index=reward_pos)

        chosen_end_scores = []
        rejected_end_scores = []

        bs = input_ids.shape[0] // 2
        chosen = input_ids[:bs]
        rejected = input_ids[bs:]
        chosen_rewards = rewards[:bs]
        rejected_rewards = rewards[bs:]

        loss = 0
        for i in range(bs):
            if torch.all(torch.eq(chosen[i], rejected[i])).item():
                c_inds = (chosen[i] == self.PAD_ID).nonzero()
                c_ind = c_inds[0].item() if len(c_inds) > 0 else chosen.shape[1]
                chosen_end_scores.append(chosen_rewards[i, c_ind - 1])
                continue
            # Check if there is any padding otherwise take length of sequence
            c_inds = (chosen[i] == self.PAD_ID).nonzero()
            c_ind = c_inds[0].item() if len(c_inds) > 0 else chosen.shape[1]
            r_inds = (rejected[i] == self.PAD_ID).nonzero()
            r_ind = r_inds[0].item() if len(r_inds) > 0 else rejected.shape[1]
            #c_truncated_reward = chosen_rewards[i][c_ind-1]
            #r_truncated_reward = rejected_rewards[i][r_ind-1]
            chosen_end_scores.append(c_truncated_reward)
            rejected_end_scores.append(r_truncated_reward)

            if return_loss:
                end_ind = max(c_ind, r_ind)
                # Retrieve first index where trajectories diverge
                divergence_ind = (chosen[i] != rejected[i]).nonzero()[0]
                assert divergence_ind > 0

                # Index into the correct rewards
                c_truncated_reward = chosen_rewards[i][divergence_ind:end_ind]
                r_truncated_reward = rejected_rewards[i][divergence_ind:end_ind]

                # Append the last rewards to the list of end scores
                chosen_end_scores.append(c_truncated_reward[-1])
                rejected_end_scores.append(r_truncated_reward[-1])

                # Compute loss based on truncated rewards (ignore padding)
                loss += -F.logsigmoid(c_truncated_reward - r_truncated_reward).mean()
                #loss += -F.logsigmoid(chosen_rewards[i][c_ind-1]-rejected_rewards[i][r_ind-1])
        loss = loss / bs
        
        return chosen_end_scores, rejected_end_scores, loss

    def configure_optimizers(self, weight_decay, learning_rate, betas, device_type):
        # start with all of the candidate parameters
        param_dict = {pn: p for pn, p in self.named_parameters()}
        # filter out those that do not require grad
        param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
        # create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
        # i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't.
        decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
        nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
        optim_groups = [
            {'params': decay_params, 'weight_decay': weight_decay},
            {'params': nodecay_params, 'weight_decay': 0.0}
        ]
        num_decay_params = sum(p.numel() for p in decay_params)
        num_nodecay_params = sum(p.numel() for p in nodecay_params)
        print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
        print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
        # Create AdamW optimizer and use the fused version if it is available
        fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
        use_fused = fused_available and device_type == 'cuda'
        extra_args = dict(fused=True) if use_fused else dict()
        optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas, **extra_args)
        print(f"using fused AdamW: {use_fused}")

        return optimizer
    
    @torch.no_grad()
    def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None, block_size=512):
        for _ in range(max_new_tokens):
            # if the sequence context is growing too long we must crop it at block_size
            idx_cond = idx if idx.size(1) <= block_size else idx[:, -block_size:]
            # forward the model to get the logits for the index in the sequence
            logits, _ = self(idx_cond)
            # pluck the logits at the final step and scale by desired temperature
            logits = logits / temperature
            # optionally crop the logits to only the top k options
            if top_k is not None:
                v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
                logits[logits < v[:, [-1]]] = -float('Inf')
            # apply softmax to convert logits to (normalized) probabilities
            probs = F.softmax(logits, dim=-1)
            # sample from the distribution
            idx_next = torch.multinomial(probs, num_samples=1)
            # append sampled index to the running sequence and continue
            idx = torch.cat((idx, idx_next), dim=1)

        return idx

模型的主要结构和GPT 2是一致的,主要是加了一个reward_head的线性变换层,把最后模型输出的隐变量映射为一个数值。另外,在计算loss的时候,取chosen和rejected这两个回答的差异部分,按照之前介绍的loss值公式来进行计算。

训练

模型训练,这部分的代码就没什么特别的了,主要是我们读取数据的时候,要把chosed和rejected两部分数据组合在一起。以下是定义dataset的代码:

import torch
from torch.utils.data import Dataset
import pickle

class RewardDataset(Dataset):
    def __init__(self, dataset_file, block_size):
        with open(dataset_file, 'rb') as f:
            self.data = pickle.load(f)
        self.block_size = block_size
        
    def __len__(self):
        return (len(self.data))
    
    def __getitem__(self, index):
        chosen = self.data[index][0]
        rejected = self.data[index][1]
        delta_len = self.block_size - len(chosen)
        if delta_len >= 0:
            reward_pos_chosen = torch.IntTensor([len(chosen)-1])
            attn_mask_chosen = [1 for _ in range(len(chosen))]
            attn_mask_chosen.extend([0 for _ in range(delta_len)])
            chosen.extend([0 for _ in range(delta_len)])
        else:
            reward_pos_chosen = torch.IntTensor([self.block_size-1])
            chosen = chosen[:self.block_size]
            attn_mask_chosen = [1 for _ in range(self.block_size)]

        delta_len = self.block_size - len(rejected)
        if delta_len >= 0:
            reward_pos_rejected = torch.IntTensor([len(rejected)-1])
            attn_mask_rejected = [1 for _ in range(len(rejected))]
            attn_mask_rejected.extend([0 for _ in range(delta_len)])
            rejected.extend([0 for _ in range(delta_len)])
        else:
            reward_pos_rejected = torch.IntTensor([self.block_size-1])
            rejected = rejected[:self.block_size]
            attn_mask_rejected = [1 for _ in range(self.block_size)]

        chosen = torch.IntTensor(chosen)
        rejected = torch.IntTensor(rejected)
        attn_mask_chosen = torch.FloatTensor(attn_mask_chosen)
        attn_mask_rejected = torch.FloatTensor(attn_mask_rejected)

        return chosen, rejected, reward_pos_chosen, reward_pos_rejected, attn_mask_chosen, attn_mask_rejected

定义一个函数加载之前SFT训练的模型的参数:

def load_sft(checkpointname, vocab_size, device):
    checkpoint = torch.load(checkpointname)
    config = checkpoint['config']
    config['num_heads'] = config['num_head']
    config.pop('num_head')
    config['vocab_size'] = vocab_size
    model_sft = GPT2(**config)
    model_sft = torch.compile(model_sft)
    model_sft.load_state_dict(checkpoint['model_state_dict'])
    sd_sft = model_sft.state_dict()
    sd_keys_sft = sd_sft.keys()
    sd_keys_sft = [k for k in sd_keys_sft if not k.endswith('lm_head.weight')] # ignore these, just a buffer
    #sd_keys_sft = [k for k in sd_keys_sft if not k.endswith('.attn.bias')] # same, just the mask (buffer)

    model = RewardModel(**config)
    model.to(device)
    model = torch.compile(model)
    sd = model.state_dict()

    for k in sd_keys_sft:
        assert sd_sft[k].shape == sd[k].shape
        with torch.no_grad():
            sd[k].copy_(sd_sft[k])

    del model_sft, sd_sft

    return model

最后就是对模型进行训练了,代码没什么特别的地方:

    dataset = RewardDataset(args.dataset, 1024)
    dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=True, num_workers=4)

    total_loss = 0

    scaler = torch.cuda.amp.GradScaler(enabled=(dtype == 'float16'))

    for epoch in range(start_epoch, start_epoch+args.num_epoch):
        start = time.time()
        for batch, (chosen,rejected,pos_chosen,pos_rejected,attn_mask_chosen,attn_mask_rejected) in enumerate(dataloader):
            optimizer.zero_grad()
            lr = get_lr(batch+epoch*args.steps_epoch, args.warmup_steps, args.learning_rate, args.steps_epoch*args.total_epochs)
            for param_group in optimizer.param_groups:
                param_group['lr'] = lr

            input_data = torch.cat((chosen, rejected), 0)
            pos = torch.cat((pos_chosen, pos_rejected), 0)
            input_data = input_data.to(args.device)
            pos = pos.long().to(args.device)
            attn_mask_temp = torch.cat((attn_mask_chosen, attn_mask_rejected), 0)
            attn_mask_temp = attn_mask_temp.to(args.device)
            attn_mask_temp = torch.unsqueeze(attn_mask_temp, -1)
            attn_mask = torch.bmm(attn_mask_temp, attn_mask_temp.transpose(1,2))
            attn_mask = torch.unsqueeze(attn_mask, 1)

            if mixed:
                with torch.amp.autocast(device_type='cuda', dtype=torch.float16):
                    reward_c, reward_r, loss = model(input_data, pos, None, return_loss=True)
                scaler.scale(loss).backward()
                scaler.step(optimizer)
                scaler.update()
            else:
                reward_c, reward_r, loss = model(input_data, pos, attn_mask, return_loss=True)
                loss.backward()
                optimizer.step()
            total_loss += loss.item()
            #total_accuracy += accuracy(logits, y)
            total_accuracy = 0
            if batch%100 == 0 and batch>0:
                line = f'Batch: {batch+epoch*args.steps_epoch}, Loss: {total_loss/100:.4f}, Learning_rate: {lr:.7f}'
                with open(args.logfile, 'a') as logfile:
                    logfile.write(line+'\n')
                print(line)
                total_loss = 0
                total_accuracy = 0
                if batch%args.steps_epoch == 0:
                    break

总结

以上就是训练奖励模型的具体实现过程。当奖励模型训练好之后,我们就可以用来对SFT模型给出的回答进行评分,这个评分将作为奖励值,用于最后的强化学习中,使得模型能根据人类的偏好来调整回答的质量。

猜你喜欢

转载自blog.csdn.net/gzroy/article/details/132630418