使用克拉默法则进行三点定圆(三维)

在这里插入图片描述

本文由CSDN点云侠原创,爬虫网站请自重。

1.三维圆

  已知不共线的三个点,设其坐标为 ( x 1 , y 1 , z 1 ) (x_1,y_1,z_1) (x1,y1,z1) ( x 2 , y 2 , z 2 ) (x_2,y_2,z_2) (x2,y2,z2) ( x 3 , y 3 , z 3 ) (x_3,y_3,z_3) (x3,y3,z3),空间圆的一般方程为:
A ( x 2 + y 2 + z 2 ) + B x + C y + D z + E = 0 (1) A(x^2+y^2+z^2)+Bx+Cy+Dz+E=0\tag{1} A(x2+y2+z2)+Bx+Cy+Dz+E=0(1)
将式(1)变形可得圆的标准方程为:
( x + B 2 A ) 2 + ( y + C 2 A ) 2 + ( z + D 2 A ) 2 = B 2 + C 2 + D 2 − 4 A E 4 A 2 (2) (x+\frac{B}{2A})^2+(y+\frac{C}{2A})^2+(z+\frac{D}{2A})^2=\frac{B^2+C^2+D^2-4AE}{4A^2}\tag{2} (x+2AB)2+(y+2AC)2+(z+2AD)2=4A2B2+C2+D24AE(2)
将三个已知点代入式(1),可得关于 A , B , C , D , E A,B,C,D,E A,B,C,D,E的齐次线性方程组:

[ x 2 + y 2 + z 2 x y z 1 x 1 2 + y 1 2 + z 1 2 x 1 y 1 z 1 1 x 2 2 + y 2 2 + z 2 2 x 2 y 2 z 2 1 x 3 2 + y 3 2 + z 3 2 x 3 y 3 z 3 1 ] ⋅ [ A B C D E ] = [ 0 0 0 0 0 ] (3) \left[ \begin{matrix} x^2+y^2+z^2 & x & y&z&1\\ x_1^2+y_1^2+z_1^2 & x_1 & y_1&z_1&1 \\ x_2^2+y_2^2+z_2^2 & x_2 & y_2&z_2&1 \\ x_3^2+y_3^2+z_3^2 & x_3 & y_3&z_3&1 \\ \end{matrix} \right]\cdot \left[ \begin{matrix} A\\ B \\ C \\ D \\ E \\ \end{matrix} \right]= \left[ \begin{matrix} 0\\ 0 \\ 0 \\ 0 \\ 0 \\ \end{matrix} \right]\tag{3} x2+y2+z2x12+y12+z12x22+y22+z22x32+y32+z32xx1x2x3yy1y2y3zz1z2z31111 ABCDE = 00000 (3)

式(3)中的系数矩阵并非方阵。于是利用三个已知点来确定平面 π \pi π,其方程为:
m x + n y + p z + q = 0 (4) mx+ny+pz+q=0\tag{4} mx+ny+pz+q=0(4)
将三个已知点代入式(4),可得关于 m , n , p , q m,n,p,q m,n,p,q的齐次线性方程组:

[ x 2 + y 2 x y 1 x 1 2 + y 1 2 x 1 y 1 1 x 2 2 + y 2 2 x 2 y 2 1 x 3 2 + y 3 2 x 3 y 3 1 ] ⋅ [ m n p q ] = [ 0 0 0 0 ] (5) \left[ \begin{matrix} x^2+y^2 & x & y&1\\ x_1^2+y_1^2 & x_1 & y_1&1 \\ x_2^2+y_2^2 & x_2 & y_2&1 \\ x_3^2+y_3^2 & x_3 & y_3&1 \\ \end{matrix} \right]\cdot \left[ \begin{matrix} m\\ n \\ p \\ q \\ \end{matrix} \right]= \left[ \begin{matrix} 0\\ 0 \\ 0 \\ 0 \\ \end{matrix} \right]\tag{5} x2+y2x12+y12x22+y22x32+y32xx1x2x3yy1y2y31111 mnpq = 0000 (5)

在三点不共线的前提下,该齐次线性方程组有非零解,其等价于系数矩阵不满秩,即有:

∣ x 2 + y 2 x y 1 x 1 2 + y 1 2 x 1 y 1 1 x 2 2 + y 2 2 x 2 y 2 1 x 3 2 + y 3 2 x 3 y 3 1 ∣ = 0 (6) \left| \begin{matrix} x^2+y^2 & x & y&1\\ x_1^2+y_1^2 & x_1 & y_1&1 \\ x_2^2+y_2^2 & x_2 & y_2&1 \\ x_3^2+y_3^2 & x_3 & y_3&1 \\ \end{matrix} \right|=0\tag{6} x2+y2x12+y12x22+y22x32+y32xx1x2x3yy1y2y31111 =0(6)
将式(6)展开,并与式(4)对比可得四个系数:
m = + ∣ y 1 z 1 1 y 2 z 2 1 y 3 z 3 1 ∣ (7) m=+\left| \begin{matrix} y_1 & z_1&1 \\ y_2 & z_2&1 \\ y_3 & z_3&1 \\ \end{matrix} \right|\tag{7} m=+ y1y2y3z1z2z3111 (7)

n = − ∣ x 1 z 1 1 x 2 z 2 1 x 3 z 3 1 ∣ (8) n=-\left| \begin{matrix} x_1& z_1&1 \\ x_2 & z_2&1 \\ x_3& z_3&1 \\ \end{matrix} \right|\tag{8} n= x1x2x3z1z2z3111 (8)

p = + ∣ x 1 y 1 1 x 2 y 2 1 x 3 y 3 1 ∣ (9) p=+\left| \begin{matrix} x_1& y_1 &1 \\ x_2 & y_2 &1 \\ x_3 & y_3 &1 \\ \end{matrix} \right|\tag{9} p=+ x1x2x3y1y2y3111 (9)

q = − ∣ x 1 y 1 z 1 x 2 y 2 z 2 x 3 y 3 z 3 ∣ (10) q=-\left| \begin{matrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \\ \end{matrix} \right|\tag{10} q= x1x2x3y1y2y3z1z2z3 (10)
由式(2)可得圆心坐标 ( x c , y c , z c ) (x_c,y_c,z_c) (xc,yc,zc)
{ x c = − B 2 A y c = − C 2 A z c = − D 2 A (11) \begin{cases} x_c=-\frac{B}{2A}\\ y_c=-\frac{C}{2A}\\ z_c=-\frac{D}{2A}\\ \end{cases} \tag{11} xc=2AByc=2ACzc=2AD(11)
由于圆心 ( x c , y c , z c ) ( x_c , y_c , z_c ) (xc,yc,zc)也在平面 π \pi π上,于是将式((11)代入式(4)可得
2 q A − m B − n C − p D = 0 (12) 2qA−mB−nC−pD=0\tag{12} 2qAmBnCpD=0(12)

将式(12)与式(3)结合,可得
[ x 2 + y 2 + z 2 x y z 1 x 1 2 + y 1 2 + z 1 2 x 1 y 1 z 1 1 x 2 2 + y 2 2 + z 2 2 x 2 y 2 z 2 1 x 3 2 + y 3 2 + z 3 2 x 3 y 3 z 3 1 2 q − m − n − p 1 ] ⋅ [ A B C D E ] = [ 0 0 0 0 0 ] (13) \left[ \begin{matrix} x^2+y^2+z^2 & x & y&z&1\\ x_1^2+y_1^2+z_1^2 & x_1 & y_1&z_1&1 \\ x_2^2+y_2^2+z_2^2 & x_2 & y_2&z_2&1 \\ x_3^2+y_3^2+z_3^2 & x_3 & y_3&z_3&1 \\ 2q & -m & -n&-p&1 \\ \end{matrix} \right]\cdot \left[ \begin{matrix} A\\ B \\ C \\ D \\ E \\ \end{matrix} \right]= \left[ \begin{matrix} 0\\ 0 \\ 0 \\ 0 \\ 0 \\ \end{matrix} \right]\tag{13} x2+y2+z2x12+y12+z12x22+y22+z22x32+y32+z322qxx1x2x3myy1y2y3nzz1z2z3p11111 ABCDE = 00000 (13)
在三点不共线的前提下,该齐次线性方程组有非零解,其等价于系数矩阵不满秩,即有:

A = + ∣ x 1 y 1 z 1 1 x 2 y 2 z 2 1 x 3 y 3 z 3 1 − m − n − p 0 ∣ (14) A=+\left| \begin{matrix} x_1 & y_1&z_1&1 \\ x_2 & y_2&z_2&1 \\ x_3 & y_3&z_3&1 \\ -m & -n&-p&0 \\ \end{matrix} \right|\tag{14} A=+ x1x2x3my1y2y3nz1z2z3p1110 (14)

B = − ∣ x 1 2 + y 1 2 + z 1 2 y 1 z 1 1 x 2 2 + y 2 2 + z 2 2 y 2 z 2 1 x 3 2 + y 3 2 + z 3 2 y 3 z 3 1 2 q − n − p 0 ∣ (15) B=-\left| \begin{matrix} x_1^2+y_1^2+z_1^2& y_1&z_1&1 \\ x_2^2+y_2^2+z_2^2 & y_2&z_2&1 \\ x_3^2+y_3^2+z_3^2 & y_3&z_3&1 \\ 2q & -n&-p&0 \\ \end{matrix} \right|\tag{15} B= x12+y12+z12x22+y22+z22x32+y32+z322qy1y2y3nz1z2z3p1110 (15)

C = + ∣ x 1 2 + y 1 2 + x 1 2 x 1 z 1 1 x 2 2 + y 2 2 + x 2 2 x 2 z 2 1 x 3 2 + y 3 2 + x 3 2 x 3 z 3 1 2 q − m − p 0 ∣ (16) C=+\left| \begin{matrix} x_1^2+y_1^2+x_1^2& x_1&z_1&1 \\ x_2^2+y_2^2+x_2^2 & x_2&z_2&1 \\ x_3^2+y_3^2+x_3^2 & x_3&z_3&1 \\ 2q & -m&-p&0 \\ \end{matrix} \right|\tag{16} C=+ x12+y12+x12x22+y22+x22x32+y32+x322qx1x2x3mz1z2z3p1110 (16)

D = − ∣ x 1 2 + y 1 2 + x 1 2 x 1 y 1 1 x 2 2 + y 2 2 + x 2 2 x 2 y 2 1 x 3 2 + y 3 2 + x 3 2 x 3 y 3 1 2 q − m − n 0 ∣ (17) D=-\left| \begin{matrix} x_1^2+y_1^2+x_1^2& x_1&y_1&1 \\ x_2^2+y_2^2+x_2^2 & x_2&y_2&1 \\ x_3^2+y_3^2+x_3^2 & x_3&y_3&1 \\ 2q & -m&-n&0 \\ \end{matrix} \right|\tag{17} D= x12+y12+x12x22+y22+x22x32+y32+x322qx1x2x3my1y2y3n1110 (17)

E = + ∣ x 1 2 + y 1 2 + x 1 2 x 1 y 1 z 1 x 2 2 + y 2 2 + x 2 2 x 2 y 2 z 2 x 3 2 + y 3 2 + x 3 2 x 3 y 3 z 2 2 q − m − n − p ∣ (18) E=+\left| \begin{matrix} x_1^2+y_1^2+x_1^2& x_1&y_1&z_1 \\ x_2^2+y_2^2+x_2^2 & x_2&y_2&z_2 \\ x_3^2+y_3^2+x_3^2 & x_3&y_3&z_2 \\ 2q & -m&-n&-p \\ \end{matrix} \right|\tag{18} E=+ x12+y12+x12x22+y22+x22x32+y32+x322qx1x2x3my1y2y3nz1z2z2p (18)

可得圆心坐标 ( x c , y c , z c ) (x_c,y_c,z_c) (xc,yc,zc)和半径 r r r,即
{ x c = − B 2 A y c = − C 2 A z c = − D 2 A r = B 2 + C 2 + D 2 − 4 A E 4 A 2 (19) \begin{cases} x_c=-\frac{B}{2A}\\ y_c=-\frac{C}{2A}\\ z_c=-\frac{D}{2A}\\ r=\sqrt\frac{B^2+C^2+D^2-4AE}{4A^2} \end{cases} \tag{19} xc=2AByc=2ACzc=2ADr=4A2B2+C2+D24AE (19)

2.python代码

import numpy as np


def three_points_fit_3dcircle(points):
    p1 = points[0]
    p2 = points[1]
    p3 = points[2]
    # 共线检查
    temp01 = p1 - p2
    temp02 = p3 - p2
    temp03 = np.cross(temp01, temp02)
    temp = (temp03 @ temp03) / (temp01 @ temp01) / (temp02 @ temp02)
    if temp < 10 ** -6:
        print('\t三点共线, 无法确定圆')
        return None
    temp1 = np.vstack((p1, p2, p3))
    temp2 = np.ones(3).reshape(3, 1)
    mat1 = np.hstack((temp1, temp2))  # size = 3x4

    m = +np.linalg.det(mat1[:, 1:])
    n = -np.linalg.det(np.delete(mat1, 1, axis=1))
    p = +np.linalg.det(np.delete(mat1, 2, axis=1))
    q = -np.linalg.det(temp1)

    temp3 = np.array([p1 @ p1, p2 @ p2, p3 @ p3]).reshape(3, 1)
    temp4 = np.hstack((temp3, mat1))
    temp5 = np.array([2 * q, -m, -n, -p, 0])
    mat2 = np.vstack((temp4, temp5))  # size = 4x5

    A = +np.linalg.det(mat2[:, 1:])
    B = -np.linalg.det(np.delete(mat2, 1, axis=1))
    C = +np.linalg.det(np.delete(mat2, 2, axis=1))
    D = -np.linalg.det(np.delete(mat2, 3, axis=1))
    E = +np.linalg.det(mat2[:, :-1])

    pc = -np.array([B, C, D]) / 2 / A
    r = np.sqrt(B * B + C * C + D * D - 4 * A * E) / 2 / abs(A)

    return pc, r

3.计算结果

圆心坐标:[-0.77585587 -0.26649462 -0.01626231]
圆半径:0.9999999780711272

猜你喜欢

转载自blog.csdn.net/qq_36686437/article/details/131910765
今日推荐