正则化解决过拟合

本片举三个例子进行对比,分别是:不使用正则化、使用L2正则化、使用dropout正则化。

首先是前后向传播、加载数据、画图所需要的相关函数的reg_utils.py:

# -*- coding: utf-8 -*-

import numpy as np
import matplotlib.pyplot as plt
import scipy.io as sio

def sigmoid(x):
    """
    Compute the sigmoid of x
 
    Arguments:
    x -- A scalar or numpy array of any size.
 
    Return:
    s -- sigmoid(x)
    """
    s = 1/(1+np.exp(-x))
    return s
 
def relu(x):
    """
    Compute the relu of x
 
    Arguments:
    x -- A scalar or numpy array of any size.
 
    Return:
    s -- relu(x)
    """
    s = np.maximum(0,x)
    
    return s

def initialize_parameters(layer_dims):
    """
    Arguments:
    layer_dims -- python array (list) containing the dimensions of each layer in our network
    
    Returns:
    parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL":
                    W1 -- weight matrix of shape (layer_dims[l], layer_dims[l-1])
                    b1 -- bias vector of shape (layer_dims[l], 1)
                    Wl -- weight matrix of shape (layer_dims[l-1], layer_dims[l])
                    bl -- bias vector of shape (1, layer_dims[l])
                    
    Tips:
    - For example: the layer_dims for the "Planar Data classification model" would have been [2,2,1]. 
    This means W1's shape was (2,2), b1 was (1,2), W2 was (2,1) and b2 was (1,1). Now you have to generalize it!
    - In the for loop, use parameters['W' + str(l)] to access Wl, where l is the iterative integer.
    """
    
    np.random.seed(3)
    parameters = {
    
    }
    L = len(layer_dims) # number of layers in the network
 
    for l in range(1, L):
        parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l-1]) / np.sqrt(layer_dims[l-1])
        parameters['b' + str(l)] = np.zeros((layer_dims[l], 1))
        
        assert(parameters['W' + str(l)].shape == layer_dims[l], layer_dims[l-1])
        assert(parameters['W' + str(l)].shape == layer_dims[l], 1)
 
        
    return parameters

def forward_propagation(X, parameters):
    """
    Implements the forward propagation (and computes the loss) presented in Figure 2.
    
    Arguments:
    X -- input dataset, of shape (input size, number of examples)
    Y -- true "label" vector (containing 0 if cat, 1 if non-cat)
    parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3":
                    W1 -- weight matrix of shape ()
                    b1 -- bias vector of shape ()
                    W2 -- weight matrix of shape ()
                    b2 -- bias vector of shape ()
                    W3 -- weight matrix of shape ()
                    b3 -- bias vector of shape ()
    
    Returns:
    loss -- the loss function (vanilla logistic loss)
    """
    
    # retrieve parameters
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    W3 = parameters["W3"]
    b3 = parameters["b3"]
    
    # LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID
    z1 = np.dot(W1, X) + b1
    a1 = relu(z1)
    z2 = np.dot(W2, a1) + b2
    a2 = relu(z2)
    z3 = np.dot(W3, a2) + b3
    a3 = sigmoid(z3)
    
    cache = (z1, a1, W1, b1, z2, a2, W2, b2, z3, a3, W3, b3)
    
    return a3, cache
 
def compute_cost(a3, Y):
    """
    Implement the cost function
    
    Arguments:
    a3 -- post-activation, output of forward propagation
    Y -- "true" labels vector, same shape as a3
    
    Returns:
    cost - value of the cost function
    """
    m = Y.shape[1]
    
    logprobs = np.multiply(-np.log(a3),Y) + np.multiply(-np.log(1 - a3), 1 - Y)
    cost = 1./m * np.nansum(logprobs)
    
    return cost

def backward_propagation(X, Y, cache):
    """
    Implement the backward propagation presented in figure 2.
    
    Arguments:
    X -- input dataset, of shape (input size, number of examples)
    Y -- true "label" vector (containing 0 if cat, 1 if non-cat)
    cache -- cache output from forward_propagation()
    
    Returns:
    gradients -- A dictionary with the gradients with respect to each parameter, activation and pre-activation variables
    """
    m = X.shape[1]
    (z1, a1, W1, b1, z2, a2, W2, b2, z3, a3, W3, b3) = cache
    
    dz3 = 1./m * (a3 - Y)
    dW3 = np.dot(dz3, a2.T)
    db3 = np.sum(dz3, axis=1, keepdims = True)
    
    da2 = np.dot(W3.T, dz3)
    dz2 = np.multiply(da2, np.int64(a2 > 0))
    dW2 = np.dot(dz2, a1.T)
    db2 = np.sum(dz2, axis=1, keepdims = True)
    
    da1 = np.dot(W2.T, dz2)
    dz1 = np.multiply(da1, np.int64(a1 > 0))
    dW1 = np.dot(dz1, X.T)
    db1 = np.sum(dz1, axis=1, keepdims = True)
    
    gradients = {
    
    "dz3": dz3, "dW3": dW3, "db3": db3,
                 "da2": da2, "dz2": dz2, "dW2": dW2, "db2": db2,
                 "da1": da1, "dz1": dz1, "dW1": dW1, "db1": db1}
    
    return gradients

def update_parameters(parameters, grads, learning_rate):
    """
    Update parameters using gradient descent
    
    Arguments:
    parameters -- python dictionary containing your parameters 
    grads -- python dictionary containing your gradients, output of n_model_backward
    
    Returns:
    parameters -- python dictionary containing your updated parameters 
                  parameters['W' + str(i)] = ... 
                  parameters['b' + str(i)] = ...
    """
    
    L = len(parameters) // 2 # number of layers in the neural networks
 
    # Update rule for each parameter
    for k in range(L):
        parameters["W" + str(k+1)] = parameters["W" + str(k+1)] - learning_rate * grads["dW" + str(k+1)]
        parameters["b" + str(k+1)] = parameters["b" + str(k+1)] - learning_rate * grads["db" + str(k+1)]
        
    return parameters

def load_2D_dataset(is_plot=True):
    data = sio.loadmat('datasets/data.mat')
    train_X = data['X'].T
    train_Y = data['y'].T
    test_X = data['Xval'].T
    test_Y = data['yval'].T
    if is_plot:
        plt.scatter(train_X[0, :], train_X[1, :], c=train_Y, s=40, cmap=plt.cm.Spectral)
        plt.show()
    
    return train_X, train_Y, test_X, test_Y

def predict(X, y, parameters):
    """
    This function is used to predict the results of a  n-layer neural network.
    
    Arguments:
    X -- data set of examples you would like to label
    parameters -- parameters of the trained model
    
    Returns:
    p -- predictions for the given dataset X
    """
    
    m = X.shape[1]
    p = np.zeros((1,m), dtype = np.int)
    
    # Forward propagation
    a3, caches = forward_propagation(X, parameters)
    
    # convert probas to 0/1 predictions
    for i in range(0, a3.shape[1]):
        if a3[0,i] > 0.5:
            p[0,i] = 1
        else:
            p[0,i] = 0
 
    # print results
    print("Accuracy: "  + str(np.mean((p[0,:] == y[0,:]))))
    
    return p

def plot_decision_boundary(model, X, y):
    # Set min and max values and give it some padding
    x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1
    y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1
    h = 0.01
    # Generate a grid of points with distance h between them
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
    # Predict the function value for the whole grid
    Z = model(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    # Plot the contour and training examples
    plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
    plt.ylabel('x2')
    plt.xlabel('x1')
    plt.scatter(X[0, :], X[1, :], c=y, cmap=plt.cm.Spectral)
    plt.show()
 
def predict_dec(parameters, X):
    """
    Used for plotting decision boundary.
    
    Arguments:
    parameters -- python dictionary containing your parameters 
    X -- input data of size (m, K)
    
    Returns
    predictions -- vector of predictions of our model (red: 0 / blue: 1)
    """
    
    # Predict using forward propagation and a classification threshold of 0.5
    a3, cache = forward_propagation(X, parameters)
    predictions = (a3>0.5)
    return predictions

可以先画出数据看是什么样:

train_X, train_Y, test_X, test_Y = reg_utils.load_2D_dataset(is_plot=True)

在这里插入图片描述
然后开始测试代码:

不使用正则化

首先我们不使用正则化,让lambd参数(删了个a不与python关键字重合)和keep_prob为默认值0和1,表示不使用这两个正则化。

import numpy as np
import matplotlib.pyplot as plt
import sklearn
import sklearn.datasets
import reg_utils  


plt.rcParams['figure.figsize'] = (7.0, 4.0)  # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'

# 加载数据集
train_X, train_Y, test_X, test_Y = reg_utils.load_2D_dataset(is_plot=False)

def model(X, Y, learning_rate=0.3, num_iterations=30000, print_cost=True, is_plot=True, lambd=0, keep_prob=1):
    """
    实现一个三层的神经网络:LINEAR ->RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID

    参数:
        X - 输入的数据,维度为(2, 要训练/测试的数量)
        Y - 标签,【0(蓝色) | 1(红色)】,维度为(1,对应的是输入的数据的标签)
        learning_rate - 学习速率
        num_iterations - 迭代的次数
        print_cost - 是否打印成本值,每迭代10000次打印一次,但是每1000次记录一个成本值
        is_polt - 是否绘制梯度下降的曲线图
        lambd - 正则化的超参数,实数
        keep_prob - 随机删除节点的概率
    返回
        parameters - 学习后的参数
    """
    grads = {
    
    }
    costs = []
    m = X.shape[1]
    layers_dims = [X.shape[0], 20, 3, 1]

    # 初始化参数
    parameters = reg_utils.initialize_parameters(layers_dims)

    # 开始学习
    for i in range(0, num_iterations):
        # 前向传播
        ## 是否随机删除节点
        if keep_prob == 1:
            ### 不随机删除节点
            a3, cache = reg_utils.forward_propagation(X, parameters)
        elif keep_prob < 1:
            ### 随机删除节点
            a3, cache = forward_propagation_with_dropout(X, parameters, keep_prob)
        else:
            print("keep_prob参数错误!程序退出。")
            exit

        # 计算成本
        ## 是否使用二范数
        if lambd == 0:
            ### 不使用L2正则化
            cost = reg_utils.compute_cost(a3, Y)
        else:
            ### 使用L2正则化
            cost = compute_cost_with_regularization(a3, Y, parameters, lambd)

        # 反向传播
        ## 可以同时使用L2正则化和随机删除节点,但是本次实验不同时使用。
        assert (lambd == 0 or keep_prob == 1)

        ## 两个参数的使用情况
        if (lambd == 0 and keep_prob == 1):
            ### 不使用L2正则化和不使用随机删除节点
            grads = reg_utils.backward_propagation(X, Y, cache)
        elif lambd != 0:
            ### 使用L2正则化,不使用随机删除节点
            grads = backward_propagation_with_regularization(X, Y, cache, lambd)
        elif keep_prob < 1:
            ### 使用随机删除节点,不使用L2正则化
            grads = backward_propagation_with_dropout(X, Y, cache, keep_prob)

        # 更新参数
        parameters = reg_utils.update_parameters(parameters, grads, learning_rate)

        # 记录并打印成本
        if i % 1000 == 0:
            ## 记录成本
            costs.append(cost)
            if (print_cost and i % 10000 == 0):
                # 打印成本
                print("第" + str(i) + "次迭代,成本值为:" + str(cost))

    # 是否绘制成本曲线图
    if is_plot:
        plt.plot(costs)
        plt.ylabel('cost')
        plt.xlabel('iterations (x1,000)')
        plt.title("Learning rate =" + str(learning_rate))
        plt.show()

    # 返回学习后的参数
    return parameters

# 进行模型学习,得到最终的参数
parameters = model(train_X, train_Y, is_plot=True)
print("训练集:")
predictions_train = reg_utils.predict(train_X, train_Y, parameters)
print("测试集:")
predictions_test = reg_utils.predict(test_X, test_Y, parameters)

运行后结果如下:

0次迭代,成本值为:0.655741252348100210000次迭代,成本值为:0.1632998752572421320000次迭代,成本值为:0.13851642423265018
训练集:
Accuracy: 0.9478672985781991
测试集:
Accuracy: 0.915

在这里插入图片描述
这样的结果看起来还算正常(因为数据集的问题,过拟合的特征还看不太出来不是很明显),接下来绘制决策边界分割曲线会看得比较明显:

plt.title("Model without regularization")
axes = plt.gca()
axes.set_xlim([-0.75, 0.40])
axes.set_ylim([-0.75, 0.65])
reg_utils.plot_decision_boundary(lambda x: reg_utils.predict_dec(parameters, x.T), train_X, train_Y)

运行结果如下:
在这里插入图片描述
可以很明显的看到过拟合了,钻牛角尖过分学习那几个局部特征了。
接下来试验一下引入正则化的效果。

使用L2正则化

L2正则化公式如下(L2正则化主要体现在loss的公式上面):
在这里插入图片描述
L2正则化成本其实就是每一层的权重的平方和,用代码np.sum(np.square(Wl))来计算。
d W [ l ] = ( f r o m b a c k p r o p ) + λ m W [ l ] , f r o m b a c k p r o p 就是 d W [ l ] dW^{[l]} =(frombackprop)+ \frac{\lambda}{m}W ^{[l]}, frombackprop就是dW^{[l]} dW[l]=(frombackprop)+mλW[l]frombackprop就是dW[l]

更新参数时, W [ l ] = W [ l ] − α d W [ l ] 更新参数时, W^{[l]} =W^{[l]} - \alpha dW ^{[l]} 更新参数时,W[l]=W[l]αdW[l]
最终合并同类项为: W [ l ] = ( 1 − λ m ) W [ l ] − α d W [ l ] 最终合并同类项为:W^{[l]}=(1-\frac{\lambda}{m} )W^{[l]}-\alpha dW^{[l]} 最终合并同类项为:W[l]=(1mλ)W[l]αdW[l]
通过更新参数的公式可以看到,L2正则化是通过加入正则化参数 λ {\lambda} λ 使得网络的权重变小(重量衰减),从而削弱众多神经元的影响来解决过拟合问题。
加入如下代码,计算L2正则化的loss和反向的梯度:

def compute_cost_with_regularization(A3, Y, parameters, lambd):
    """
    实现公式2的L2正则化计算成本

    参数:
        A3 - 正向传播的输出结果,维度为(输出节点数量,训练/测试的数量)
        Y - 标签向量,与数据一一对应,维度为(输出节点数量,训练/测试的数量)
        parameters - 包含模型学习后的参数的字典
    返回:
        cost - 使用公式2计算出来的正则化损失的值

    """
    m = Y.shape[1]
    W1 = parameters["W1"]
    W2 = parameters["W2"]
    W3 = parameters["W3"]

    # 无正则化loss
    cross_entropy_cost = reg_utils.compute_cost(A3, Y)

    # L2正则化loss,lambd*每层权重的平方和的和/(2*m)
    L2_regularization_cost = lambd * (np.sum(np.square(W1)) + np.sum(np.square(W2)) + np.sum(np.square(W3))) / (2 * m)

    cost = cross_entropy_cost + L2_regularization_cost

    return cost

# 当然,因为改变了成本函数,我们也必须改变向后传播的函数, 所有的梯度都必须根据这个新的成本值来计算。
def backward_propagation_with_regularization(X, Y, cache, lambd):
    """
    实现我们添加了L2正则化的模型的后向传播。

    参数:
        X - 输入数据集,维度为(输入节点数量,数据集里面的数量)
        Y - 标签,维度为(输出节点数量,数据集里面的数量)
        cache - 来自forward_propagation()的cache输出
        lambda - regularization超参数,实数

    返回:
        gradients - 一个包含了每个参数、激活值和预激活值变量的梯度的字典
    """

    m = X.shape[1]

    (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3) = cache

    dZ3 = A3 - Y

    dW3 = (1 / m) * np.dot(dZ3, A2.T) + ((lambd * W3) / m)    # 前一项为frombackprop,即原来的dW3
    db3 = (1 / m) * np.sum(dZ3, axis=1, keepdims=True)

    dA2 = np.dot(W3.T, dZ3)
    dZ2 = np.multiply(dA2, np.int64(A2 > 0))
    dW2 = (1 / m) * np.dot(dZ2, A1.T) + ((lambd * W2) / m)
    db2 = (1 / m) * np.sum(dZ2, axis=1, keepdims=True)

    dA1 = np.dot(W2.T, dZ2)
    dZ1 = np.multiply(dA1, np.int64(A1 > 0))
    dW1 = (1 / m) * np.dot(dZ1, X.T) + ((lambd * W1) / m)
    db1 = (1 / m) * np.sum(dZ1, axis=1, keepdims=True)

    gradients = {
    
    "dZ3": dZ3, "dW3": dW3, "db3": db3, "dA2": dA2,
                 "dZ2": dZ2, "dW2": dW2, "db2": db2, "dA1": dA1,
                 "dZ1": dZ1, "dW1": dW1, "db1": db1}

    return gradients

调用model函数时加入lambd参数:

parameters = model(train_X, train_Y, lambd=0.7,is_plot=True)

运行代码结果如下:

0次迭代,成本值为:0.697448449313126410000次迭代,成本值为:0.268491887328223920000次迭代,成本值为:0.2680916337127301
训练集:
Accuracy: 0.9383886255924171
测试集:
Accuracy: 0.93

loss走势曲线:
在这里插入图片描述
绘制决策边界:
这里的标题可以改一下:

plt.title("Model with L2-regularization")

在这里插入图片描述
可以看到训练集和测试集上的准确率几乎没有差距,或者说比无正则化的差距要小,从绘制边界可以看到没有过拟合的特征。
L2正则化会使决策边界更加平滑。但要注意,如果λ太大,也可能会“过度平滑”,从而导致模型高偏差,从而变成欠拟合的状态。

使用dropout正则化

原理是在某层当中设置保留某个神经元的概率keep-prob,在这层中随机失活1 - keep-prob概率的节点。则这层当中失活的节点在本轮迭代中的正向传播反向传播均不参与,即失活的节点的参数在本轮训练中不作更新,没失火的节点的参数进行更新。
假设在第3层进行随机失活,在正向传播时需要进行以下三步(假设在第三层的失活):

  1. d3 = np.random.rand(a3.shape[0], a3.shape[1]) < keep-prob 。这句话的意思是创建一个跟a3相同shape的随机矩阵,每个值与keep-prob进行对比,小于keep-prob的为True(python计算时自动变为1),大于keep-prob即不符合的为False即0。
  2. a3 = np.multiply(a3, d3) 。通过和d3相乘,来失活1 - keep-prob的节点不参与计算(与0相乘为0)。
  3. a3 /= keep-prob 。通过缩放就在计算成本的时候仍然大致具有相同的期望值,这叫做反向dropout。
    在反向传播时需要进行以下两步(假设在第三层的失活):
  4. dA3 = dA3 * D3 。舍弃正向传播中舍弃的节点,不进行计算梯度即不进行更新。
  5. dA2 /= keep_prob 。进行缩放,保持大致期望。
    加入以下代码进行dropout的正反向传播:
def forward_propagation_with_dropout(X, parameters, keep_prob=0.5):
    """
    实现具有随机舍弃节点的前向传播。
    LINEAR -> RELU + DROPOUT -> LINEAR -> RELU + DROPOUT -> LINEAR -> SIGMOID.

    参数:
        X  - 输入数据集,维度为(2,示例数)
        parameters - 包含参数“W1”,“b1”,“W2”,“b2”,“W3”,“b3”的python字典:
            W1  - 权重矩阵,维度为(20,2)
            b1  - 偏向量,维度为(20,1)
            W2  - 权重矩阵,维度为(3,20)
            b2  - 偏向量,维度为(3,1)
            W3  - 权重矩阵,维度为(1,3)
            b3  - 偏向量,维度为(1,1)
        keep_prob  - 随机删除的概率,实数
    返回:
        A3  - 最后的激活值,维度为(1,1),正向传播的输出
        cache - 存储了一些用于计算反向传播的数值的元组
    """
    np.random.seed(1)

    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    W3 = parameters["W3"]
    b3 = parameters["b3"]

    # LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID
    Z1 = np.dot(W1, X) + b1
    A1 = reg_utils.relu(Z1)

    D1 = np.random.rand(A1.shape[0], A1.shape[1])
    D1 = D1 < keep_prob  # 步骤1
    A1 = A1 * D1  # 步骤2
    A1 = A1 / keep_prob  # 步骤3

    Z2 = np.dot(W2, A1) + b2
    A2 = reg_utils.relu(Z2)
    
    D2 = np.random.rand(A2.shape[0], A2.shape[1])
    D2 = D2 < keep_prob  # 步骤1
    A2 = A2 * D2  # 步骤2
    A2 = A2 / keep_prob  # 步骤3

    Z3 = np.dot(W3, A2) + b3
    A3 = reg_utils.sigmoid(Z3)

    cache = (Z1, D1, A1, W1, b1, Z2, D2, A2, W2, b2, Z3, A3, W3, b3)

    return A3, cache

def backward_propagation_with_dropout(X, Y, cache, keep_prob):
    """
    实现我们随机删除的模型的后向传播。
    参数:
        X  - 输入数据集,维度为(2,示例数)
        Y  - 标签,维度为(输出节点数量,示例数量)
        cache - 来自forward_propagation_with_dropout()的cache输出
        keep_prob  - 随机删除的概率,实数

    返回:
        gradients - 一个关于每个参数、激活值和预激活变量的梯度值的字典
    """
    m = X.shape[1]
    (Z1, D1, A1, W1, b1, Z2, D2, A2, W2, b2, Z3, A3, W3, b3) = cache

    dZ3 = A3 - Y
    dW3 = (1 / m) * np.dot(dZ3, A2.T)
    db3 = 1. / m * np.sum(dZ3, axis=1, keepdims=True)
    dA2 = np.dot(W3.T, dZ3)

    dA2 = dA2 * D2  # 步骤1
    dA2 = dA2 / keep_prob  # 步骤2

    dZ2 = np.multiply(dA2, np.int64(A2 > 0))
    dW2 = 1. / m * np.dot(dZ2, A1.T)
    db2 = 1. / m * np.sum(dZ2, axis=1, keepdims=True)

    dA1 = np.dot(W2.T, dZ2)

    dA1 = dA1 * D1  # 步骤1
    dA1 = dA1 / keep_prob  # 步骤2

    dZ1 = np.multiply(dA1, np.int64(A1 > 0))
    dW1 = 1. / m * np.dot(dZ1, X.T)
    db1 = 1. / m * np.sum(dZ1, axis=1, keepdims=True)

    gradients = {
    
    "dZ3": dZ3, "dW3": dW3, "db3": db3, "dA2": dA2,
                 "dZ2": dZ2, "dW2": dW2, "db2": db2, "dA1": dA1,
                 "dZ1": dZ1, "dW1": dW1, "db1": db1}

    return gradients

调用model函数时加入keep_prob参数,设为0.86,即在每次迭代中第1层和第2层的14%的节点将不参与计算:

parameters = model(train_X, train_Y, keep_prob=0.86, learning_rate=0.3,is_plot=True)

运行代码结果如下:

10000次迭代,成本值为:0.06101698657490560520000次迭代,成本值为:0.060582435798513114
训练集:
Accuracy: 0.9289099526066351
测试集:
Accuracy: 0.95

在这里插入图片描述
这里的标题可以改一下:

plt.title("Model with dropout")

在这里插入图片描述
可以看到使用dropout让训练集的准确率稍微降低了些,但测试集上的准确率提升了,提高了泛化能力,还是很成功的。

dropout防止过拟合的原因:每个神经元都不依赖于任何特征,因为任意一个特征都有可能被清除。
注意,测试阶段不使用dropout,因为要保证测试结果的稳定。

猜你喜欢

转载自blog.csdn.net/weixin_45354497/article/details/130600757
今日推荐