第15章 Linux I2C核心、总线与设备驱动之I2C设备驱动实例

15.6 AT24xx EEPROM(电可擦除可编程只读存储器)的I2C设备(外设)驱动实例

drivers/misc/eeprom/at24.c文件支持大多数I2C接口的EEPROM,正如之前所述,一个具体的I2C设备驱动由i2c_driver的形式来组织,用于将设备挂接在I2C总线,组织好以后,再完成设备本身所属类型的驱动。对于EEPROM,设备本身的驱动以bin_attribute二进制sysfs节点形式呈现。

代码清单15.25 AT24xx EEPROM驱动

struct at24_data {
struct at24_platform_data chip;
struct memory_accessor macc;
int use_smbus;
/*
* Lock protects against activities from other Linux tasks,
* but not from changes by other I2C masters.
*/
struct mutex lock;
struct bin_attribute bin;

u8 *writebuf;
unsigned write_max;
unsigned num_addresses;
/*
* Some chips tie up multiple I2C addresses; dummy devices reserve
* them for us, and we'll use them with SMBus calls.
*/
struct i2c_client *client[];

};

static const struct i2c_device_id at24_ids[] = {
/* needs 8 addresses as A0-A2 are ignored */
{ "24c00", AT24_DEVICE_MAGIC(128 / 8, AT24_FLAG_TAKE8ADDR) },
/* old variants can't be handled with this generic entry! */
{ "24c01", AT24_DEVICE_MAGIC(1024 / 8, 0) },
......
{ "at24", 0 },
{ /* END OF LIST */ }
};

MODULE_DEVICE_TABLE(i2c, at24_ids);

static ssize_t at24_eeprom_read(struct at24_data *at24, char *buf,
unsigned offset, size_t count)
{
struct i2c_msg msg[2];
u8 msgbuf[2];
struct i2c_client *client;
unsigned long timeout, read_time;
int status, i;

memset(msg, 0, sizeof(msg));
client = at24_translate_offset(at24, &offset);

if (count > io_limit)
count = io_limit;

switch (at24->use_smbus) {
case I2C_SMBUS_I2C_BLOCK_DATA:
/* Smaller eeproms can work given some SMBus extension calls */
if (count > I2C_SMBUS_BLOCK_MAX)
count = I2C_SMBUS_BLOCK_MAX;
break;
case I2C_SMBUS_WORD_DATA:
count = 2;
break;
case I2C_SMBUS_BYTE_DATA:
count = 1;
break;
default:

i = 0;
if (at24->chip.flags & AT24_FLAG_ADDR16)
msgbuf[i++] = offset >> 8;
msgbuf[i++] = offset;
msg[0].addr = client->addr;
msg[0].buf = msgbuf;
msg[0].len = i;
msg[1].addr = client->addr;
msg[1].flags = I2C_M_RD;
msg[1].buf = buf;
msg[1].len = count;
}

timeout = jiffies + msecs_to_jiffies(write_timeout);
do {
read_time = jiffies;
switch (at24->use_smbus) {
case I2C_SMBUS_I2C_BLOCK_DATA:
status = i2c_smbus_read_i2c_block_data(client, offset,
count, buf);
break;
case I2C_SMBUS_WORD_DATA:
status = i2c_smbus_read_word_data(client, offset);
if (status >= 0) {
buf[0] = status & 0xff;
buf[1] = status >> 8;
status = count;
}
break;
case I2C_SMBUS_BYTE_DATA:
status = i2c_smbus_read_byte_data(client, offset);
if (status >= 0) {
buf[0] = status;
status = count;
}
break;
default:
status = i2c_transfer(client->adapter, msg, 2); // 数据传输i2c_msg
if (status == 2)
status = count;
}
dev_dbg(&client->dev, "read %zu@%d --> %d (%ld)\n",
count, offset, status, jiffies);

if (status == count)
return count;

/* REVISIT: at HZ=100, this is sloooow */
msleep(1);
} while (time_before(read_time, timeout));

return -ETIMEDOUT;
}

static ssize_t at24_read(struct at24_data *at24,
char *buf, loff_t off, size_t count)
{
ssize_t retval = 0;

if (unlikely(!count))
return count;
/*
* Read data from chip, protecting against concurrent updates
* from this host, but not from other I2C masters.
*/
mutex_lock(&at24->lock);

while (count) {
ssize_t status;

status = at24_eeprom_read(at24, buf, off, count);
if (status <= 0) {
if (retval == 0)
retval = status;
break;
}
buf += status;
off += status;
count -= status;
retval += status;
}

mutex_unlock(&at24->lock);

return retval;
}

static ssize_t at24_bin_read(struct file *filp, struct kobject *kobj,
struct bin_attribute *attr,
char *buf, loff_t off, size_t count)
{
struct at24_data *at24;

at24 = dev_get_drvdata(container_of(kobj, struct device, kobj));
return at24_read(at24, buf, off, count);

}

static int at24_probe(struct i2c_client *client, const struct i2c_device_id *id)
{
struct at24_platform_data chip;
bool writable;
int use_smbus = 0;
struct at24_data *at24;
int err;
unsigned i, num_addresses;
kernel_ulong_t magic;

if (client->dev.platform_data) {
chip = *(struct at24_platform_data *)client->dev.platform_data;
} else {
if (!id->driver_data)
return -ENODEV;

magic = id->driver_data;
chip.byte_len = BIT(magic & AT24_BITMASK(AT24_SIZE_BYTELEN));
magic >>= AT24_SIZE_BYTELEN;
chip.flags = magic & AT24_BITMASK(AT24_SIZE_FLAGS);
/*
* This is slow, but we can't know all eeproms, so we better
* play safe. Specifying custom eeprom-types via platform_data
* is recommended anyhow.
*/
chip.page_size = 1;

/* update chipdata if OF is present */
at24_get_ofdata(client, &chip);

chip.setup = NULL;
chip.context = NULL;
}

if (!is_power_of_2(chip.byte_len))
dev_warn(&client->dev,
"byte_len looks suspicious (no power of 2)!\n");
if (!chip.page_size) {
dev_err(&client->dev, "page_size must not be 0!\n");
return -EINVAL;
}
if (!is_power_of_2(chip.page_size))
dev_warn(&client->dev,
"page_size looks suspicious (no power of 2)!\n");

/* Use I2C operations unless we're stuck with SMBus extensions. */
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
if (chip.flags & AT24_FLAG_ADDR16)
return -EPFNOSUPPORT;

if (i2c_check_functionality(client->adapter,
I2C_FUNC_SMBUS_READ_I2C_BLOCK)) {
use_smbus = I2C_SMBUS_I2C_BLOCK_DATA;
} else if (i2c_check_functionality(client->adapter,
I2C_FUNC_SMBUS_READ_WORD_DATA)) {
use_smbus = I2C_SMBUS_WORD_DATA;
} else if (i2c_check_functionality(client->adapter,
I2C_FUNC_SMBUS_READ_BYTE_DATA)) {
use_smbus = I2C_SMBUS_BYTE_DATA;
} else {
return -EPFNOSUPPORT;
}
}

if (chip.flags & AT24_FLAG_TAKE8ADDR)
num_addresses = 8;
else
num_addresses = DIV_ROUND_UP(chip.byte_len,
(chip.flags & AT24_FLAG_ADDR16) ? 65536 : 256);

at24 = devm_kzalloc(&client->dev, sizeof(struct at24_data) +
num_addresses * sizeof(struct i2c_client *), GFP_KERNEL);
if (!at24)
return -ENOMEM;
mutex_init(&at24->lock);
at24->use_smbus = use_smbus;
at24->chip = chip;
at24->num_addresses = num_addresses;
/*
* Export the EEPROM bytes through sysfs, since that's convenient.
* By default, only root should see the data (maybe passwords etc)
*/
sysfs_bin_attr_init(&at24->bin);
at24->bin.attr.name = "eeprom";
at24->bin.attr.mode = chip.flags & AT24_FLAG_IRUGO ? S_IRUGO : S_IRUSR;
at24->bin.read = at24_bin_read;
at24->bin.size = chip.byte_len;

at24->macc.read = at24_macc_read;
writable = !(chip.flags & AT24_FLAG_READONLY);
if (writable) {
if (!use_smbus || i2c_check_functionality(client->adapter,
I2C_FUNC_SMBUS_WRITE_I2C_BLOCK)) {

unsigned write_max = chip.page_size;
at24->macc.write = at24_macc_write;
at24->bin.write = at24_bin_write;
at24->bin.attr.mode |= S_IWUSR;
if (write_max > io_limit)
write_max = io_limit;
if (use_smbus && write_max > I2C_SMBUS_BLOCK_MAX)
write_max = I2C_SMBUS_BLOCK_MAX;
at24->write_max = write_max;
/* buffer (data + address at the beginning) */
at24->writebuf = devm_kzalloc(&client->dev,
write_max + 2, GFP_KERNEL);
if (!at24->writebuf)
return -ENOMEM;
} else {
dev_warn(&client->dev,
"cannot write due to controller restrictions.");
}
}

at24->client[0] = client;

/* use dummy devices for multiple-address chips */
for (i = 1; i < num_addresses; i++) {
at24->client[i] = i2c_new_dummy(client->adapter,
client->addr + i); // instantiate an i2c dummy device
if (!at24->client[i]) {
dev_err(&client->dev, "address 0x%02x unavailable\n",
client->addr + i);
err = -EADDRINUSE;
goto err_clients;
}
}

err = sysfs_create_bin_file(&client->dev.kobj, &at24->bin);
if (err)
goto err_clients;

i2c_set_clientdata(client, at24);

dev_info(&client->dev, "%zu byte %s EEPROM, %s, %u bytes/write\n",
at24->bin.size, client->name,
writable ? "writable" : "read-only", at24->write_max);
if (use_smbus == I2C_SMBUS_WORD_DATA ||
    use_smbus == I2C_SMBUS_BYTE_DATA) {
dev_notice(&client->dev, "Falling back to %s reads, "
   "performance will suffer\n", use_smbus ==
   I2C_SMBUS_WORD_DATA ? "word" : "byte");
}

/* export data to kernel code */
if (chip.setup)
chip.setup(&at24->macc, chip.context);

return 0;

err_clients:
for (i = 1; i < num_addresses; i++)
if (at24->client[i])
i2c_unregister_device(at24->client[i]);

return err;
}

static int at24_remove(struct i2c_client *client)
{
struct at24_data *at24;
int i;

at24 = i2c_get_clientdata(client);
sysfs_remove_bin_file(&client->dev.kobj, &at24->bin);

for (i = 1; i < at24->num_addresses; i++)
i2c_unregister_device(at24->client[i]);

return 0;
}

static const struct of_device_id at24_of_match[] = {
{ .compatible = "atmel,24c32", },
{ }
};
MODULE_DEVICE_TABLE(of, at24_of_match);

static struct i2c_driver at24_driver = {
.driver = {
.name = "at24",
.owner = THIS_MODULE,
.of_match_table = at24_of_match,
},
.probe = at24_probe,
.remove = at24_remove,
.id_table = at24_ids,
};

static int __init at24_init(void)
{
if (!io_limit) {
pr_err("at24: io_limit must not be 0!\n");
return -EINVAL;
}

io_limit = rounddown_pow_of_two(io_limit);
return i2c_add_driver(&at24_driver);
}
module_init(at24_init);

static void __exit at24_exit(void)
{
i2c_del_driver(&at24_driver);
}
module_exit(at24_exit);

备注:

drivers/misc/eeprom/at24.c不依赖于具体的CPU和I2C控制器的硬件特性,如果某一电路板包含该外设,只需要在板级文件中添加对应的i2c_board_info,如:

static struct i2c_board_info i2c_devs[] __initdata = {

             { I2C_BOARD_INFO("24c02", 0x57), },

             { },

};

在支持设备树的情况下,在.dts文件中添加一个节点:

                i2c@11100 {

                        status = "okay";

                        s24c02: s24c02@50 {
                                compatible = "atmel,24c02";
                                reg = <0x50>;
                        };  
                };  

总结:

      Linux的I2C驱动体系结构,主要由3部分组成,即I2C核心、I2C总线驱动和I2C设备驱动。I2C核心是I2C总线驱动和I2C设备驱动的中间枢纽,I2C核心以通用的、与平台无关的接口实现了I2C中设备与适配器的沟通。I2C总线驱动填充i2c_adapter和i2c_algorithm结构体,I2C设备驱动填充i2c_driver结构体并实现其本身所对应设备类型的驱动。

      系统中i2c-dev.c(drivers/i2c/i2c-dev.c)文件定义的主设备号为89的设备,可以方便地给应用程序提供读写I2C设备寄存器的能力,这使得开发者在大多数时候并不需要为具体的I2C设备驱动定义文件操作接口。

备注:请学习相关的I2C Tools的使用(读取I2C设备的工具)。


猜你喜欢

转载自blog.csdn.net/xiezhi123456/article/details/80569554