Swin_Transformer_minivit代码解读

由于Swin_Transformer_minivit代码是在Swin_Transformer的基础上改的,所以文章仅解读相对原改变的部分,有需要的reader可移步到下面的链接看Swin_Transformer的代码解读。swin-transformer代码详解_社区小铁匠的博客-CSDN博客https://blog.csdn.net/tiehanhanzainal/article/details/125041407?spm=1001.2014.3001.5501

如上图所示,在每个阶段共享MSA和MLP的权值,并添加两个转换块来增加参数的多样性。转换块和规范化层不是共享的。

在代码层面,第一个不同的地方是在WindowAttention模块的结构,第二个存在差异的是SwintransformBlock部分,对应到上图中为第二个transform模块。

WindowAttention

该模块在window上进行自注意力操作中的\frac{QK^{T}}{\sqrt{d}}之后为每个window添加相对位置坐标,再经过一个线性层,执行掩模操作,再经过一个线性层,再执行dropout正则化以防止过拟合,到这了已经完成了WindowAttention模块里面的Transform变化,后续的变化与原结构相同就不一一赘述。


class WindowAttention(nn.Module):
    """ Window based multi-head self attention (W-MSA) module with relative position bias.
    It supports both of shifted and non-shifted window.

    Args:
        dim (int): Number of input channels.
        window_size (tuple[int]): The height and width of the window.
        num_heads (int): Number of attention heads.
        qkv_bias (bool, optional):  If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
        attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
        proj_drop (float, optional): Dropout ratio of output. Default: 0.0
    """

    def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.,):

        super().__init__()
        self.dim = dim
        self.window_size = window_size  # Wh, Ww
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim ** -0.5

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

        self.softmax = nn.Softmax(dim=-1)

        # define a parameter table of relative position bias
        # 相邻window的相对位置偏差
        self.relative_position_bias_table = nn.Parameter(
            torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads))  # 2*Wh-1 * 2*Ww-1, nH

        # get pair-wise relative position index for each token inside the window
        # 获取窗口内每个标记的成对相对位置索引
        coords_h = torch.arange(self.window_size[0])  # 产生wh个元素的一维张量
        coords_w = torch.arange(self.window_size[1])
        # torch.stack():沿着一个新维度对输入张量序列进行连接,一维变二维,二维变三维
        coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, Wh, Ww
        coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww
        relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Ww 广播减法
        relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2
        # 因为采取的是相减 ,所以得到的索引是从负数开始的 ,所以加上偏移量 ,让其从0开始
        relative_coords[:, :, 0] += self.window_size[0] - 1  # shift to start from 0
        relative_coords[:, :, 1] += self.window_size[1] - 1
        # 后续我们需要将其展开成一维偏移量 而对于(x ,y)和(y ,x)这两个坐标 在二维上是不同的,
        # 但是通过将x,y坐标相加转换为一维偏移的时候,他的偏移量是相等的,所以对其做乘法以进行区分
        relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
        relative_position_index = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww
        self.register_buffer("relative_position_index", relative_position_index)

        trunc_normal_(self.relative_position_bias_table, std=.02)
        

    def forward(self, x, mask=None, proj_l=None, proj_w=None):
        """
        Args:
            x: input features with shape of (num_windows*B, N, C)
            mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
        """
        B_, N, C = x.shape  # (B*H*W/(window_size)**2, window_size, window_size, c)
        qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) # (B_, num_heads, N, D)
        q, k, v = qkv[0], qkv[1], qkv[2]  # make torchscript happy (cannot use tensor as tuple)

        q = q * self.scale
        # (B_, num_heads, N, N)
        attn = (q @ k.transpose(-2, -1))

        # 添加相对位置坐标
        relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
            self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1)  # Wh*Ww,Wh*Ww,nH
        relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww
        attn = attn + relative_position_bias.unsqueeze(0)
        
# ------------------------------------------------------------------------------------------------------
        # 第一个transform的第一个线性层
        if proj_l is not None:
            attn = proj_l(attn.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)

        if mask is not None:
            nW = mask.shape[0]
            attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
            attn = attn.view(-1, self.num_heads, N, N)
            attn = self.softmax(attn)
        else:
            attn = self.softmax(attn)

        # 第一个transform的第二个线性层
        if proj_w is not None:
            attn = proj_w(attn.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)

        attn = self.attn_drop(attn)
# ------------------------------------------------------------------------------------------------------
        
        x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x

 SwintransformBlock

该模块在两个shortcut之间添加了一个层归一化与一个线性层 。具体代码如下:

class SwinTransformerBlock(nn.Module):
    r""" Swin Transformer Block.

    Args:
        dim (int): Number of input channels.
        input_resolution (tuple[int]): Input resulotion.
        num_heads (int): Number of attention heads.
        window_size (int): Window size.
        shift_size (int): Shift size for SW-MSA.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float, optional): Stochastic depth rate. Default: 0.0
        act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
    """

    def __init__(self, dim, input_resolution, num_heads, window_size=7,
                 mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., shift_size=0., drop_path=[0],
                 act_layer=nn.GELU, norm_layer=nn.LayerNorm,
                 # The following arguments are for MiniViT
                 # 是否使用window滑块
                 is_init_window_shift=False,
                 # 是否在每个共享层中使用单独的层归一化
                 is_sep_layernorm = False,
                 # 第二个transform:层归一化+分组卷积
                 is_transform_FFN=False,
                 # 是否对 MSA 使用转换(windowAttention模块里面的transform)
                 is_transform_heads = False,):
        super().__init__()
        self.dim = dim
        self.input_resolution = input_resolution  # H, W
        self.num_heads = num_heads
        self.window_size = window_size # 7
        self.mlp_ratio = mlp_ratio

        self.share_num = len(drop_path)  # students网络参数共享层数
        self.is_init_window_shift = is_init_window_shift
        self.is_sep_layernorm = is_sep_layernorm
        self.is_transform_FFN = is_transform_FFN
        self.is_transform_heads = is_transform_heads
# ------------------------------------------------------------------
        # 对参与权重共享的层进行归一化操作
        if self.is_sep_layernorm:  
            self.norm1_list = nn.ModuleList()
            for _ in range(self.share_num):
                self.norm1_list.append(norm_layer(dim))
        else:
            self.norm1 = norm_layer(dim)

        # 对MSA使用转换(windowAttention模块里面的transform)
        if self.is_transform_heads:
            self.proj_l = nn.ModuleList()
            self.proj_w = nn.ModuleList()
            for _ in range(self.share_num):
                self.proj_l.append(nn.Linear(num_heads, num_heads))
                self.proj_w.append(nn.Linear(num_heads, num_heads))
        else:
            self.proj_l = None
            self.proj_w = None
# ------------------------------------------------------------------
        self.attn = WindowAttention(
            dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
            qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop,)

        if min(self.input_resolution) <= self.window_size:
            # if window size is larger than input resolution, we don't partition windows
            shift_size = 0
            self.window_size = min(self.input_resolution)
        assert 0 <= shift_size < self.window_size, "shift_size must in 0-window_size"
        self.shift_size = shift_size
        if shift_size > 0:
            # calculate attention mask for SW-MSA
            H, W = self.input_resolution
            img_mask = torch.zeros((1, H, W, 1))  # 1 H W 1
            h_slices = (slice(0, -self.window_size),
                        slice(-self.window_size, -self.shift_size),
                        slice(-self.shift_size, None))
            w_slices = (slice(0, -self.window_size),
                        slice(-self.window_size, -self.shift_size),
                        slice(-self.shift_size, None))
            cnt = 0
            for h in h_slices:
                for w in w_slices:
                    img_mask[:, h, w, :] = cnt
                    cnt += 1

            mask_windows = window_partition(img_mask, self.window_size)  # nW, window_size, window_size, 1
            mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
            attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
            attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
        else:
            attn_mask = None
        self.register_buffer("attn_mask", attn_mask)


# ------------------------------------------------------------------
        if self.is_sep_layernorm:
            self.norm2_list = nn.ModuleList()
            for _ in range(self.share_num):
                self.norm2_list.append(norm_layer(dim))
        else:
            self.norm2 = norm_layer(dim)
# ------------------------------------------------------------------

        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

        self.drop_path = nn.ModuleList()
        for index, drop_path_value in enumerate(drop_path):
            self.drop_path.append(DropPath(drop_path_value) if drop_path_value > 0. else nn.Identity())


# ------------------------------------------------------------------
        # 第二个transform的结构,层归一化+分组卷积
        if self.is_transform_FFN:
            self.local_norm_list = nn.ModuleList()  # 层进行归一化
            self.local_conv_list = nn.ModuleList()  # 分组卷积卷积层
            self.local_norm_list.append(norm_layer(dim))
            _window_size = 7
            self.local_conv_list.append(nn.Conv2d(dim, dim, _window_size, 1, _window_size // 2, groups=dim, bias=qkv_bias))
        else:
            self.local_conv_list = None
# ------------------------------------------------------------------

    def forward_feature(self, x, is_shift=False, layer_index=0):

        H, W = self.input_resolution
        B, L, C = x.shape
        assert L == H * W, "input feature has wrong size"

        shortcut = x

        if self.is_sep_layernorm:
            x = self.norm1_list[layer_index](x)  # 取每个stage的第一层进行归一化
        else:
            x = self.norm1(x)   # 对所有层进行层归一化

        x = x.view(B, H, W, C)

        # cyclic shift
        if is_shift and self.shift_size > 0:
            shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
        else:
            shifted_x = x

        # partition windows
        x_windows = window_partition(shifted_x, self.window_size)  # nW*B, window_size, window_size, C
        x_windows = x_windows.view(-1, self.window_size * self.window_size, C)  # nW*B, window_size*window_size, C

        # 对stage的第一层进行操作,第一个transform的第一个线性变换,在windowAttention调用
        proj_l = self.proj_l[layer_index] if self.is_transform_heads else self.proj_l
        # 第一个transform的第二个线性变换,在windowAttention调用
        proj_w = self.proj_w[layer_index] if self.is_transform_heads else self.proj_w

        # W-MSA/SW-MSA
        attn_windows = self.attn(x_windows, mask=self.attn_mask, proj_l=proj_l, proj_w=proj_w)  # nW*B, window_size*window_size, C

        # merge windows
        attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
        shifted_x = window_reverse(attn_windows, self.window_size, H, W)  # B H' W' C

        # reverse cyclic shift
        if is_shift and self.shift_size > 0:
            x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
        else:
            x = shifted_x
        x = x.view(B, H * W, C)

        # FFN
        x = shortcut + self.drop_path[layer_index](x)

# -----------------------------------------------------------------------------------
        # 第二个transform的结构,层归一化+分组卷积
        if self.local_conv_list is not None:
            x = self.local_norm_list[layer_index](x)
            x = x.permute(0, 2, 1).view(B, C, H, W)
            x = x + self.local_conv_list[layer_index](x)
            x = x.view(B, C, H * W).permute(0, 2, 1)
# -----------------------------------------------------------------------------------

        norm2 = self.norm2_list[layer_index] if self.is_sep_layernorm else self.norm2

        x = x + self.drop_path[layer_index](self.mlp(norm2(x)))
        return x

    def forward(self, x):
        init_window_shift = self.is_init_window_shift
        for index in range(self.share_num):
            x = self.forward_feature(x, init_window_shift, index)
            init_window_shift = not init_window_shift
        return x

 

BasicLayer

首先swin_transform_minivit在主体结构上的变化如上图所示,swin_transform_minivit阶段的数量是可配置的,而不是固定。待压缩的原始模型各阶段的transformer层应具有相同的结构和尺寸。但是没有采用权重蒸馏,所以代码里面只有将stage压缩的部分具体代码如下:

class BasicLayer(nn.Module):
    """ A basic Swin Transformer layer for one stage.

    Args:
        dim (int): Number of input channels.
        input_resolution (tuple[int]): Input resolution.
        depth (int): Number of blocks.
        num_heads (int): Number of attention heads.
        window_size (int): Local window size.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
        norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
        downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
    """

    def __init__(self, dim, input_resolution, depth, num_heads, window_size,
                 mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=[0.], norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False,
                 # The following parameters are for MiniViT
                 is_sep_layernorm = False,
                 is_transform_FFN=False,
                 is_transform_heads = False,
                 separate_layer_num = 1,
                 ):

        super().__init__()
        ## drop path must be a list
        assert(isinstance(drop_path, list))

        self.dim = dim
        self.input_resolution = input_resolution  # W ,H
        self.depth = depth
        self.use_checkpoint = use_checkpoint

        self.share_times = depth // separate_layer_num  # 共享次数 = 网络深度//需要分离的层数
        self.separate_layer_num = separate_layer_num

        # build blocks
        self.blocks = nn.ModuleList()
        # 每个stage模块生成一个larly
        for i in range(self.separate_layer_num):
            # 确定dropout使用的比例
            drop_path_list = drop_path[(i*self.share_times): min((i+1)*self.share_times, depth)]
            self.blocks.append(SwinTransformerBlock(dim=dim,
                                 input_resolution=input_resolution,
                                 num_heads=num_heads, window_size=window_size,
                                 shift_size=window_size // 2,
                                 mlp_ratio=mlp_ratio,
                                 qkv_bias=qkv_bias, qk_scale=qk_scale,
                                 drop=drop, attn_drop=attn_drop,
                                 drop_path=drop_path_list,
                                 norm_layer=norm_layer,
                                 ## The following arguments are for MiniViT
                                 is_init_window_shift = (i*self.share_times)%2==1,
                                 is_sep_layernorm = is_sep_layernorm,
                                 is_transform_FFN = is_transform_FFN,
                                 is_transform_heads = is_transform_heads,
                                ))

        # patch merging layer
        if downsample is not None:
            self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
        else:
            self.downsample = None

    def forward(self, x):
        for blk in self.blocks:
            if self.use_checkpoint:
                x = checkpoint.checkpoint(blk, x)
            else:
                x = blk(x)
        if self.downsample is not None:
            x = self.downsample(x)
        return x

 后续再更新。

猜你喜欢

转载自blog.csdn.net/tiehanhanzainal/article/details/125067709