Virtex7 Microblaze下DDR3测试

原创 猫叔 傅里叶的猫

        这篇文章我们讲一下Virtex7上DDR3的测试例程,Vivado也提供了一个DDR的example,但却是纯Verilog代码,比较复杂,这里我们把DDR3的MIG的IP Core挂在Microblaze下,用很简单的程序就可以进行DDR3的测试。

        但这个工程只是一个简单的测试用例,实际应用中不会这么用的,因此传输效率太低。

新建工程,FPGA选型为xc7v690tffg-1761

1. 创建Block Design,命名为Microblaze_DDR3。

2. 在bd文件中加入Mircoblaze。

3. 点击Run Block Automation

4. 按照默认配置,确定即可。

5. 出现下面的界面。

6. 添加MIG的IP Core

7. 开始配置DDR,选择Create Design.

8. 这一步是选择Pin脚兼容的FPGA,我们不做选择,直接Next。

9. 选择DDR3.

10. ①选择DDR的工作频率,我们这里让DDR3的频率为1600MHz,所以时钟频率是800MHz;

      ②选择器件,根据实际情况来选择即可;

      ③数据位宽,也是根据板卡上的实际位宽进行选择;

      ④默认即可。

11. 选择AXI总线的位宽,这里我们选择512.

12. ①选择输入时钟频率,虽然DDR的工作时钟是800MHz(在第10步中选择),但我们可以输入一个低频时钟,然后MIG的IP Core中会倍频到所需频率。

    ②MIG的IP Core默认会输出一个200MHz的时钟,如果还需要其他的时钟输出,可以在这里选择。其他选择默认即可。

13. ①选择输入时钟的方式,这里的输入时钟就是我们上一个页面中的设置的200MHz的输入时钟,如果选择差分或单端,则输入通过FPGA的管脚输入200MHz时钟到MIG的IP Core;如果选择No Buffer,则可以通过FPGA内部的MMCM输出一个200MHz时钟到MIG;这里我选择了No Buffer;

    ②选择参考时钟的方式,参考时钟频率固定是200MHz,如果选择如果选择差分或单端,则输入通过FPGA的管脚输入200MHz时钟到MIG的IP Core;如果选择No Buffer,则可以通过FPGA内部的MMCM输出一个200MHz时钟到MIG;如果在前一个页面中选择了输入时钟频率是200MHz,则这边会出现一个Use System Clock的选项,因为此时两个时钟频率是相同的嘛。这里我选择了Use System Clock;

    ③设置输入复位信号的极性,这个要特别注意,尽量选择高有效,因为无论我们选择高复位还是低复位,它的端口名都叫sys_rst,会让人直观就觉得是高复位。我第一次使用时,就没注意到这个选项,默认为低,但在MIG的端口上看到sys_rst这个名字我以为是高有效,结果DDR一直不通。

(备注:对于绝大多数的Xilinx的IP,如果是低有效的复位,端口名字中肯定是有N这个标志的)

14. 这个页面不需要操作。

15. 下面开始分配管脚,我比较习惯于选第二个,无论是第一次分配还是后面再重新分配。

16. 在这一页,可以根据原理图一一分配管脚;如果有现成的xdc/ucf文件,可以直接通过Read XDC/UCF读入,然后再选择Validate验证管脚分配是否正确。

如果Validate成功,则会提示下面的界面。

17. 如果在第13步中,选择了差分或单端输入,则这里会出现下面第一个图;如果选择了No buffer,则这里会出现第二个图。很容易理解,如果选择了通过外部管脚输入时钟,那这里就是让选择具体的管脚。并不是所有的MRCC或者SRCC管脚都可以选的,只能选择跟DDR管脚同一片区域的(比如DDR放在了Bank31 32 33,那么这里的时钟输入管脚就不能选择Bank15)。

如果不选择复位信号管脚,就可以通过FPGA内部逻辑来输入复位。

后面一路Next就完成了MIG IP Core的配置了。

18. 在bd文件中,加入AXI Interconnect、UARTLite和Interrupt(如果不加中断模块,Microblaze的程序跑不起来),串口用来打印信息。然后再添加各输入输出端口,把内部的线连接起来,如下图所示。

但这个图里的线太多,看着不直观,我们把Microblaze模块、mdm_1、rst_clk_wiz和local_memory模块(上图中红框中的4个模块)放到一个子模块中,取名mb_min_sys,如下图。

19. 创建顶层的top文件,并在top文件中例化bd文件。可以把init_calib_complete和mmcm_locked这两个信号抓出来,在下载程序后,这两个信号必须都是高,不然DDR就工作不正常,肯定是中间某个环节配置有问题。具体top.v文件内容见附录

20. 将工程综合、实现、生成bit文件,并导出Hardware。

21. 打开sdk,新建Application Project,并按下面的步骤依次操作。

再选择模板为HelloWorld,最后Finish。

22. 修改helloworld.c,见附录,重新编译,如果提示overflowed则把lscript.ld文件中的size改大。

运行程序后,可以看到串口打印信息如下:

说明DDR3可以正常工作。

附录:

top.v


`timescale 1ns / 1ps



module top

   (

  input clk_n,

  input clk_p,

  input UART_rxd,

  output UART_txd,

  output [15:0]ddr3_addr,

  output [2:0]ddr3_ba,

  output ddr3_cas_n,

  output [0:0]ddr3_ck_n,

  output [0:0]ddr3_ck_p,

  output [0:0]ddr3_cke,

  output [0:0]ddr3_cs_n,

  output [7:0]ddr3_dm,

  inout [63:0]ddr3_dq,

  inout [7:0]ddr3_dqs_n,

  inout [7:0]ddr3_dqs_p,

  output [0:0]ddr3_odt,

  output ddr3_ras_n,

  output ddr3_reset_n,

  output ddr3_we_n

  );



  wire axi4_clk;

  wire axil_clk;

  reg axi4_rstn;

  wire axil_rstn;

  wire init_calib_complete;

  wire mmcm_locked;

  wire ddr_rst;



  always @ ( posedge axi4_clk )

  begin

      axi4_rstn <= axil_rstn;

  end



  reg [8:0] cnt;

  always @ ( posedge axil_clk )

  begin

      if(~axil_rstn)

          cnt <= 'd0;

      else if(cnt=='d256)

               cnt <= cnt ;

        else

                cnt <= cnt + 1'b1;

  end



  assign ddr_rst = (cnt=='d256)?1'b0:1'b1;



  MicroBlaze_DDR3 MicroBlaze_DDR3_i

       (.UART_rxd                   (UART_rxd             ),

        .UART_txd                   (UART_txd             ),

        .axil_clk                   (axil_clk             ),

        .axi4_clk                   (axi4_clk             ),

        .axi4_rstn                  (axi4_rstn            ),

        .clk_in_clk_n               (clk_n                ),

        .clk_in_clk_p               (clk_p                ),

        .ddr3_addr                  (ddr3_addr            ),

        .ddr3_ba                    (ddr3_ba              ),

        .ddr3_cas_n                 (ddr3_cas_n           ),

        .ddr3_ck_n                  (ddr3_ck_n            ),

        .ddr3_ck_p                  (ddr3_ck_p            ),

        .ddr3_cke                   (ddr3_cke             ),

        .ddr3_cs_n                  (ddr3_cs_n            ),

        .ddr3_dm                    (ddr3_dm              ),

        .ddr3_dq                    (ddr3_dq              ),

        .ddr3_dqs_n                 (ddr3_dqs_n           ),

        .ddr3_dqs_p                 (ddr3_dqs_p           ),

        .ddr3_odt                   (ddr3_odt             ),

        .ddr3_ras_n                 (ddr3_ras_n           ),

        .ddr3_reset_n               (ddr3_reset_n         ),

        .ddr3_we_n                  (ddr3_we_n            ),

        .ddr_rst                    (ddr_rst              ),

        .init_calib_complete        (init_calib_complete  ),

        .mmcm_locked                (mmcm_locked          ),

        .reset                      (1'b0                 ),

        .axil_rstn                  (axil_rstn            )

      );



endmodule

helloworld.c

#include<stdio.h>

#include"platform.h"

#include"xil_printf.h"





int main()

{

    init_platform();

    print("-------ddr3test----------------------\n\r");

    unsignedint*DDR_MEM = (unsignedint*)XPAR_MIG_7SERIES_0_BASEADDR;

    //write data to ddr3

    *DDR_MEM =0x12345678;

    //read back

    unsignedint value =*(unsignedint *)XPAR_MIG_7SERIES_0_BASEADDR;



    xil_printf("value= 0x%x\n", value);



   cleanup_platform();

    return 0;

}

猜你喜欢

转载自blog.csdn.net/jk_101/article/details/128313790
今日推荐