【概率论与数理统计】1.3 概率的性质


【配套教材】概率论与数理统计教程(第三版)——茆诗松

性质1 P ( Ω ) = 0 P(\Omega)=0 P(Ω)=0

证明:由于任何事件与不可能事件之并仍是此事件本身,所以
Ω = Ω ∪ ∅ ∪ ∅ ∪ . . . ∪ ∅ ∪ . . . \Omega=\Omega\cup\varnothing\cup\varnothing\cup...\cup\varnothing\cup... Ω=Ω......
因为不可能事件与任何事件是互不相容的,故由可列可加性公理得
P ( Ω ) = P ( Ω ) + P ( ∅ ) + P ( ∅ ) + . . . + P ( ∅ ) + . . . P(\Omega)=P(\Omega)+P(\varnothing)+P(\varnothing)+...+P(\varnothing)+... P(Ω)=P(Ω)+P()+P()+...+P()+...
从而由 P ( Ω ) = 1 P(\Omega)=1 P(Ω)=1
P ( ∅ ) + P ( ∅ ) + . . . = 0 P(\varnothing)+P(\varnothing)+...=0 P()+P()+...=0
再由非负性公理,必有 P ( Ω ) = 0 P(\Omega)=0 P(Ω)=0

结论得证

1.3.1 概率的可加性

性质2(有限可加性):若有限个事件 A 1 , A 2 , . . . , A n A_1,A_2,...,A_n A1,A2,...,An互不相容,则有
P ( ⋃ i = 1 n A i ) = ∑ i = 1 n P ( A i ) P(\bigcup\limits_{i = 1}^n { {A_i}} ) = \sum\limits_{i = 1}^n {P({A_i})} P(i=1nAi)=i=1nP(Ai)
证明:对 A 1 , A 2 , . . . , A n , ∅ , ∅ , . . . A_1,A_2,...,A_n,\varnothing,\varnothing,... A1,A2,...,An,,,...应用可列可加性,得

P ( A 1 ∪ A 2 ∪ . . . ∪ A n ) = P ( A 1 ∪ A 2 ∪ . . . ∪ A n ∪ ∅ ∪ ∅ ∪ . . . ) = P ( A 1 ) + P ( A 2 ) + . . . + P ( A n ) + P ( ∅ ) + P ( ∅ ) + . . . = P ( A 1 ) + P ( A 2 ) + . . . + P ( A n ) \begin{aligned} P({A_1} \cup {A_2} \cup ... \cup {A_n}) &= P({A_1} \cup {A_2} \cup ... \cup {A_n} \cup \varnothing \cup \varnothing \cup ...) \\ &= P({A_1}) + P({A_2}) + ... + P({A_n}) + P(\varnothing ) + P(\varnothing ) + ... \\ &= P({A_1}) + P({A_2}) + ... + P({A_n})\\ \end{aligned} P(A1A2...An)=P(A1A2...An...)=P(A1)+P(A2)+...+P(An)+P()+P()+...=P(A1)+P(A2)+...+P(An)

结论得证

性质3:对任一事件A,有 P ( A ‾ ) = 1 − P ( A ) P(\overline A ) = 1 - P(A) P(A)=1P(A)

证明:因为 A A A A ‾ \overline A A互不相容,且 Ω = A ∪ A ‾ \Omega = A \cup \overline A Ω=AA。所以由概率的正则性和有限可加性得 1 = P ( A ) + P ( A ‾ ) 1 = P(A) + P(\overline A ) 1=P(A)+P(A),由此可得 P ( A ‾ ) = 1 − P ( A ) P(\overline A ) = 1 - P(A) P(A)=1P(A)

1.3.2 概率的单调性

性质4:若 A ⊃ B A \supset B AB,则 P ( A − B ) = P ( A ) − P ( B ) P(A - B) = P(A) - P(B) P(AB)=P(A)P(B)

证明:因为 A ⊃ B A \supset B AB,所以
A = B ∪ ( A − B ) A = B \cup (A - B) A=B(AB)
B B B A − B A - B AB互不相容,由有限可加性得
P ( A ) = P ( B ) + P ( A − B ) P(A) = P(B) + P(A - B) P(A)=P(B)+P(AB)
即得
P ( A − B ) = P ( A ) − P ( B ) P(A - B) = P(A) - P(B) P(AB)=P(A)P(B)
结论得证

推论(单调性):若 A ⊃ B A \supset B AB,则 P ( A ) ⩾ P ( B ) P(A) \geqslant P(B) P(A)P(B)

性质5:对任意两个事件 A , B A,B A,B,有 P ( A − B ) = P ( A ) − P ( A B ) P(A - B) = P(A) - P(AB) P(AB)=P(A)P(AB)

证明:因为 A − B = A − A B A - B = A - AB AB=AAB,且 A B ⊂ A AB \subset A ABA,所以由性质4得
P ( A − B ) = P ( A − A B ) = P ( A ) − P ( A B ) P(A - B) = P(A - AB) = P(A) - P(AB) P(AB)=P(AAB)=P(A)P(AB)
结论得证

1.3.3 概率的加法公式

性质6(加法公式):对任意两个事件 A , B A,B A,B,有
P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A B ) P(A \cup B) = P(A) + P(B) - P(AB) P(AB)=P(A)+P(B)P(AB)
对任意n个事件 A 1 , A 2 , . . . , A n A_1,A_2,...,A_n A1,A2,...,An,有
P ( ⋃ i = 1 n A i ) = ∑ i = 1 n P ( A i ) − ∑ 1 ⩽ i < j ⩽ n P ( A i A j ) + ∑ 1 ⩽ i < j < k ⩽ n P ( A i A j A k ) + . . . + ( − 1 ) n − 1 P ( A 1 A 2 . . . A n ) \begin{aligned} P(\bigcup\limits_{i = 1}^n { {A_i}} ) &= \sum\limits_{i = 1}^n {P({A_i}) - \sum\limits_{1 \leqslant i\lt j \leqslant n}^{} {P({A_i}{A_j})} } + \\ & \sum\limits_{1 \leqslant i\lt j \lt k \leqslant n}^{} {P({A_i}{A_j}{A_k}) + ... + { {( - 1)}^{n - 1}}P({A_1}{A_2}...{A_n})} \end{aligned} P(i=1nAi)=i=1nP(Ai)1i<jnP(AiAj)+1i<j<knP(AiAjAk)+...+(1)n1P(A1A2...An)
推论(半可加性):对于任意两个事件 A , B A,B A,B,有
P ( A ∪ B ) ⩽ P ( A ) + P ( B ) P(A \cup B) \leqslant P(A) + P(B) P(AB)P(A)+P(B)
对任意n个事件 A 1 , A 2 , . . . , A n A_1,A_2,...,A_n A1,A2,...,An,有
P ( ⋃ i = 1 n A i ) ⩽ ∑ i = 1 n P ( A i ) P(\bigcup\limits_{i = 1}^n { {A_i}} ) \leqslant \sum\limits_{i = 1}^n {P({A_i})} P(i=1nAi)i=1nP(Ai)
例:配对问题

  在一个有n个人参加的晚会上,每个人都带了一件礼物,且假定各人带的礼物都不相同。晚会期间各人从放在一起的n件礼物中随机抽取一件,问至少有一个人自己抽到自己礼物的概率是多少?

  以 A i A_i Ai记事件“第 i i i个人自己抽到自己的礼物”, i = 1 , 2 , . . . , n i=1,2,...,n i=1,2,...,n。所求概率为 P ( A 1 ∪ A 2 ∪ . . . ∪ A n ) P({A_1} \cup {A_2} \cup ... \cup {A_n}) P(A1A2...An)

P ( A 1 ) = P ( A 2 ) = . . . = P ( A n ) = 1 n , P ( A 1 A 2 ) = P ( A 1 A 3 ) = . . . = P ( A n − 1 A n ) = 1 n ( n − 1 ) , P ( A 1 A 2 A 3 ) = P ( A 1 A 2 A 4 ) = . . . = P ( A n − 2 A n − 1 A n ) = 1 n ( n − 1 ) ( n − 2 ) , . . . P ( A 1 A 2 . . . A n ) = 1 n ! \begin{aligned} & P({A_1}) = P({A_2}) = ... = P({A_n}) = {1 \over n}, \\ & P({A_1}{A_2}) = P({A_1}{A_3}) = ... = P({A_{n - 1}}{A_n}) = {1 \over {n(n - 1)}}, \\ & P({A_1}{A_2}{A_3}) = P({A_1}{A_2}{A_4}) = ... = P({A_{n - 2}}{A_{n - 1}}{A_n}) = {1 \over {n(n - 1)(n - 2)}}, \\ & ... \\ & P({A_1}{A_2}...{A_n}) = {1 \over {n!}} \\ \end{aligned} P(A1)=P(A2)=...=P(An)=n1,P(A1A2)=P(A1A3)=...=P(An1An)=n(n1)1,P(A1A2A3)=P(A1A2A4)=...=P(An2An1An)=n(n1)(n2)1,...P(A1A2...An)=n!1

所以由概率的加法公式得
P ( A 1 ∪ A 2 ∪ . . . ∪ A n ) = 1 − 1 2 ! + 1 3 ! − 1 4 ! + . . . + ( − 1 ) n − 1 1 n ! P({A_1} \cup {A_2} \cup ... \cup {A_n}) = 1 - {1 \over {2!}} + {1 \over {3!}} - {1 \over {4!}} + ... + {( - 1)^{n - 1}}{1 \over {n!}} P(A1A2...An)=12!1+3!14!1+...+(1)n1n!1
  例如,当 n = 5 n=5 n=5时,此概率为 0.6333 0.6333 0.6333;当 n → ∞ n \to \infty n时,此概率的极限为 1 − e − 1 = 0.6321 1 - {e^{ - 1}} = 0.6321 1e1=0.6321。这表明:即使参加晚会的人很多(比如100人以上),事件“至少有一个人自己抽到自己礼物”也不是必然事件。

1.3.4 概率的连续性

定义1:(1)对 F \mathcal{F} F中任一单调不减的事件序列 F 1 ⊂ F 2 ⊂ . . . ⊂ F n ⊂ . . . {F_1} \subset {F_2} \subset ... \subset {F_n} \subset ... F1F2...Fn...,称可列并 ⋃ n = 1 ∞ F n \bigcup\limits_{n = 1}^\infty { {F_n}} n=1Fn { F n } \{ {F_n}\} { Fn}极限事件,记为
lim ⁡ n → ∞ F n = ⋃ n = 1 ∞ F n \mathop {\lim }\limits_{n \to \infty } {F_n} = \bigcup\limits_{n = 1}^\infty { {F_n}} nlimFn=n=1Fn
   (2)对 F \mathcal{F} F中任一单调不增的事件序列 E 1 ⊃ E 2 ⊃ . . . ⊃ E n ⊃ . . . {E_1} \supset {E_2} \supset ... \supset {E_n} \supset ... E1E2...En...,称可列交为 ⋂ n = 1 ∞ E n \bigcap\limits_{n = 1}^\infty { {E_n}} n=1En { E n } \{ {E_n}\} { En}极限事件,记为
lim ⁡ n → ∞ E n = ⋂ n = 1 ∞ E n \mathop {\lim }\limits_{n \to \infty } {E_n} = \bigcap\limits_{n = 1}^\infty { {E_n}} nlimEn=n=1En
定义2:对 F \mathcal{F} F上的一个概率P

(1)若它对 F \mathcal{F} F中任一单调不减的事件序列 { F n } \{ {F_n}\} { Fn}均成立
lim ⁡ n → ∞ P ( F n ) = P ( lim ⁡ n → ∞ F n ) \mathop {\lim }\limits_{n \to \infty } P({F_n}) = P(\mathop {\lim }\limits_{n \to \infty } {F_n}) nlimP(Fn)=P(nlimFn)
则称概率 P P P下连续

(2)若它对 F \mathcal{F} F中任一单调不增的事件序列 { E n } \{ {E_n}\} { En}均成立
lim ⁡ n → ∞ P ( E n ) = P ( lim ⁡ n → ∞ E n ) \mathop {\lim }\limits_{n \to \infty } P({E_n}) = P(\mathop {\lim }\limits_{n \to \infty } {E_n}) nlimP(En)=P(nlimEn)
则称概率 P P P上连续

性质7(概率的连续性):若 P P P为事件域 F \mathcal{F} F上的概率,则 P P P既是下连续的,又是上连续的。

性质8:若 P P P F \mathcal{F} F上满足 P ( Ω ) = 1 P(\Omega ) = 1 P(Ω)=1的非负集合函数,则它具有可列可加性的充要条件是
  (1)它是有限可加的;(2)它是下连续的。

猜你喜欢

转载自blog.csdn.net/qq_44528283/article/details/124103358