如何使用有限的数据来训练GANs


作者:Mayank Agarwal

编译:ronghuaiyang

导读

使用自适应增强判别器(ADA)来训练StyleGAN2。

生成对抗网络(GANs)的长期挑战之一是在很少数据的情况下训练它。小数据集的关键问题是识别器对训练样本的快速过拟合。鉴别器的工作是将其输入分类为假的或真的,但由于过拟合,它把除了训练数据集以外的所有东西都作为是假的。结果,生成器收到的反馈很少,无法改进它的生成,训练失败。在本文中,我们讨论了Karras等人的最近的工作,通过自适应鉴别器增强来解决这个问题

f5653c29a5e86d29acf71956f13f81cb.png

图1,GAN的训练目标,将生成的图像分布x和真实的图像分布y匹配。左:x!=y,右:x=y

在深度学习的几乎所有领域,数据增强是防止过拟合的标准解决方案。例如,在旋转、噪声、模糊等条件下训练图像分类器,会导致在失真情况下这些语义保持不变性增加 —— 这是分类器非常需要的品质。然而,这并不能直接用于训练GANs,因为生成器将学习如何生成增强后的分布。这种对生成的样本的增强的“泄漏”是非常不可取的。

为了克服这种“泄漏”问题,作者提出了一种称为随机鉴别器增强的增强技术。他们只使用增强图像来评估鉴别器,并且在训练生成器时也这样做。鉴别器增强相当于在鉴别器上戴上失真镜,并要求生成器生成的图在通过失真镜观察时无法与训练集样本区分。

666baa23854c77765d1e80ff18391969.png

图2,左:朴素的鉴别器增强,右:随机鉴别器增强

1b3fb5340abe93b5f7b11048141031da.png

图3,增强GAN训练目标 — 增强后的生成图像和真实图像的分布Tx和Ty匹配,左:Tx!=Ty,右: Tx=Ty

然而,这种方法只有在这种扭曲可以用数据空间上的概率分布的“可逆”变换来表示时才有效。重要的是要理解,这并不意味着在单个图像上执行的增强就必须是可逆的。例如,从概率分布的意义上讲,将输入图像的90%置为零这样极端的增强是可逆的,即使对人类来说,通过忽略黑色图像直到只剩下10%的图像,来推断原始分布是很容易的。

让我们借用文中的另一个例子来直观地理解可逆变换。从{0,90,180,270}度均匀选择的随机旋转是不可逆的(图4):增强后无法辨别方向的差异。这里,生成器可以自由地生成上下颠倒的图像,因为在增强分布中,{0,90,180,270}度的相对位置是相同的。因此,尽管生成器学会了匹配增强的分布Tx和Ty,但匹配虚假和真实数据分布x和y的潜在目标仍然没有得到解决。

0c20c54c3c6972c752cd8b54a5cca576.png

图4,不可逆的例子:90度旋转

如果这个旋转仅以概率p<1进行(图2,右):这增加了0度的出现率,现在只有生成的图像有正确的方向时,增强分布才能匹配(图5)。现在,当生成器试图生成颠倒的图像时,增强分布不再一致。因此,为了匹配转换后的分布Tx和Ty,生成器被迫匹配假分布x和真实分布y。

0d5c16435304570c8f4cbbe09102a8ad.png

图5,可逆的例子:使用不均等概率的90度的旋转(p=0.8)

更一般地说,如果我们对生成的分布x和真实的分布y应用一个可逆变换T,那么为了匹配原始分布x和y,匹配增强分布Tx和Ty就足够了(图6)。

99b4bb9df79f4544c3f7c395e13c089e.png

图6,左:可逆变换,右:不可逆变换

理论上,如果增强操作T是可逆的,存在一个且只有一个增强分布Tx, 而且x不应该有“泄漏”。然而,在实践中,由于有限的样本的局限性,有限的网络表示能力,归纳偏差和训练动态,很高的p值导致了生成图像的增强的泄漏。作者还表明,p的最优值对数据集大小非常敏感。他们通过使过程自适应来解决对p进行昂贵的网格搜索的问题。在深入细节之前,让我们先了解如何在GANs中度量过拟合。

不同大小的数据集,在每种情况下训练开始以同样的方式,但最终优化停止了,并且FID开始上升(图8)。同时,开始的时候,鉴别器输出分布的和生成的图像重叠,但随着鉴别器(图7)变得越来越自信,这两个分布变得渐行渐远,并且,从FID开始恶化的点开始,随着分布的充分重叠,loss开始变得恒定。

ada3b7a1bab238566458a1f0d3878bf8.png

图7,随着训练的进行,鉴别器对于真实图像和生成图像的输出分布的重叠越来越小。

量化过拟合的标准方法是使用一个单独的验证集,并观察其相对于训练集的行为。当过拟合开始时,验证集的行为开始越来越像生成的图像,而真实样本和生成样本的鉴别器输出开始发散。从图8可以看出,对于较小的数据集,这种情况发生得更早。

edb06cb33d6058b956c5edc976c744a2.png

图8,在不同大小的数据集训练过程中,FID和鉴别器原始logits的演变。

作者提出了两种似是而非的过拟合启发式方法来度量过拟合(图9)。第一个是启发式的r*v,*表示了验证集相对于训练集和生成的图像的输出。当训练集和验证集表现完全相同时,分子为0,因此r=0表示没有过拟合。当生成的和验证集行为完全相同时,分子和分母是相同的,因此r=1表示完全过拟合。

7a8b9951ffc407697871a84f26bbede9.png

图9,过拟合启发式描述

因为它假设在一个已经很小的数据集中存在一个单独的验证集,所以不可能计算rv启发式。因此,作者转向rt,它使用训练集的鉴别器预测为正的部分来识别过拟合,并随着训练的进展动态调整增强概率p:

  • rt太高→增加更多(增加p)

  • rt过低→增加更少(减少p)

总之,作者提出了一种即插即用技术,通过引入一个应用增强的概率p来将不可逆转的图像增强转换为可逆变换。它们还提供了一种机制来自适应地调整这些增强,以改善GAN训练过程到最优状态。想要了解更多细节,我强烈推荐阅读原文。

17e361646916c39a5b9b019dcd2df988.png

—END—

英文原文:https://medium.com/swlh/training-gans-with-limited-data-22a7c8ffce78

推荐阅读:

我的2022届互联网校招分享

我的2021总结

浅谈算法岗和开发岗的区别

互联网校招研发薪资汇总

对于时间序列,你所能做的一切.

什么是时空序列问题?这类问题主要应用了哪些模型?主要应用在哪些领域?

公众号:AI蜗牛车

保持谦逊、保持自律、保持进步

37e5171cbeb98c2fdf97a8f472a390ee.png

发送【蜗牛】获取一份《手把手AI项目》(AI蜗牛车著)

发送【1222】获取一份不错的leetcode刷题笔记

发送【AI四大名著】获取四本经典AI电子书

猜你喜欢

转载自blog.csdn.net/qq_33431368/article/details/123587598