机器学习D11——分类模型的评价指标

混淆矩阵

  • 概念:在分类任务下,预测结果(Predict Condition)和真实结果(True Condition)之间存在的四种不同的组合。适用于二分类和多分类
  • 一个二分类的场景
    在这里插入图片描述
    • 真实结果的正例:猫
    • 真实结果的假例:非猫
    • 预测结果的正例:猫
    • 预测结果的假例:非猫
      • 注意:非猫并不一定指的是狗!
    • 真正例(TP):本来是猫结果预测值为猫的比例
    • 伪正例(FP):本来不是猫结果预测值为猫的比例
    • 伪反例(FN):本来是猫结果预测值为不是猫的比例
    • 真反例(TN):本来不是猫结果预测值为不是猫的比例
      • 真正例率TPR = TP / (TP + FN)【其实就是预测对的占对的总数量的值】
        • 预测为正例且实际为正例的样本占所有训练集中为正例样本的比例。
        • 将正例预测对的占正样本的比例(预测对的比例),这个比例越大越好
      • 伪反例率FPR = FP / (FP + TN)【其实就是预测错的占错的总数量的值】
        • 预测为正例但实际为负例的样本占训练集中所有负例样本的比例
        • 将负例预测错的占负样本的比例(预测错的比例),这个比例越小越好
      • 注意:如果有其他的类别,其他的每一个类别也有其对应的混淆矩阵表示真伪正例和真伪反例的比例
        在这里插入图片描述

准确率

  • Accuracy = (TP+TN)/(TP+FN+FP+TN)
    • 解释:(预测正确)/(预测对的和不对的所有结果),简而言之就是预测正确的比例。
    • 模型.score()方法返回的就是模型的准确率

召回率(较多被使用)

  • Recal = TP/(TP+FN)
    • 解释:真正为正例的样本中预测结果为正例的比例。正样本有多少被找出来了(召回了多少)
    • 例子:医院预测一个病人是否患有癌症。假设有100个测试样本(10个癌症患者,90个非癌症患者),最终预测结果为6个癌症患者,94个非癌症患者。召回率就是在10癌症患者中预测正确多少个,或者说在癌症患者中预测出癌症患者的比例(预测出的癌症患者/所有癌症患者(预测正确的+预测错误的))。
    • 使用场景:
      • 是否患癌症
      • 产品是否为残次品
  • API:recall_score

精确率

  • Precision = TP/(TP+FP)
    • 解释:预测结果为正例样本(TP+FP)中真实值为正例(TP)的比例。
      • 本来是猫预测也为猫 /(本来是猫预测也为猫+本来不是猫预测为猫)
  • API:accuracy_score

f1-score:精确率和召回率的调和平均数

  • 人们通常使用准确率和召回率这两个指标,来评价二分类模型的分析效果

  • 但是当这两个指标发生冲突时,我们很难在模型之间进行比较。比如,我们有如下两个模型A、B,A模型的召回率高于B模型,但时B模型的准确率高于A模型,A和B这两个模型的综合性能,哪一个更优呢?
    在这里插入图片描述

  • 模型的精确率和召回率是有矛盾的,而F1分数(F1-score)是分类问题的一个衡量指标。一些多分类问题的机器学习竞赛,常常将F1-score作为最终测评的方法。它是精确率和召回率的调和平均数,最大为1,最小为0。
    在这里插入图片描述

  • 反应了模型的稳健性

  • 它是精确率和召回率的调和平均数

  • 是一个综合的评判标准

  • API:f1_score
    AUC

  • AUC是一个模型评价指标,只能用于二分类模型的评价。该评价指标通常应用的比较多!

    • 应用的比较多是原因是因为很多的机器学习的分类模型计算结果都是概率的形式(比如逻辑回归),那么对于概率而言,我们就需要去设定一个阈值来判定分类,那么这个阈值的设定就会对我们的正确率和准确率造成一定成都的影响。
      • 逻辑回归的默认阈值为0.5
  • AUC(Area under Curve),表面上的意思是曲线下面的面积,这条曲线是什么?

    • ROC曲线(receiver operating characteristic curve,接收者操作特征曲线)
    • 真正例率TPR = TP / (TP + FN)
      • 预测为正例且实际为正例的样本占所有训练集中为正例样本的比例。
      • 将正例预测对的占正样本的比例(预测对的比例),这个比例越大越好
    • 伪反例率FPR = FP / (FP + TN)
      • 预测为正例但实际为负例的样本占训练集中所有负例样本的比例
      • 将负例预测错的占负样本的比例(预测错的比例),这个比例越小越好
        在这里插入图片描述
  • 在理想情况下,最佳的分类器应该尽可能地处于左上角,这就意味着分类器在伪反例率(预测错的概率)很低的同时获得了很高的真正例率(预测对的概率)。也就是说ROC曲线围起来的面积越大越好,因为ROC曲线面积越大,则曲线上面的面积越小,则分类器越能停留在ROC曲线的左上角。

    • AUC的的取值是固定在0-1之间。AUC的值越大越好。
  • AUC的API

    • from sklearn.metrics import roc_auc_score
    • y_pre = predict_proba(x_test)返回预测的概率
    • auc=roc_auc_score(y_test,y_pre[:,1])

在这里插入图片描述
在这里插入图片描述

  • 最后一句程序不可用,因为不是二分类,二分类就这么写。

猜你喜欢

转载自blog.csdn.net/weixin_44350337/article/details/115394434
今日推荐