【pytorch】resnet源码详解


在这里插入图片描述
主要是两个地方需要注意:第一个maxpool与stage1的衔接处,stage1与stage2的衔接处。也就是说上图中的双线叠加处需要注意。

bottlenck的代码:

class Bottleneck(nn.Module):
#Bottleneck是指下图中右侧图,其用于resnet50等深度较深的网络中,可减少参数,左图用于34等较浅的网络
    expansion = 4 
    #此处的expansion是指在每个小残差块内,减小尺度增加维度过程,维度加深的倍数。如64*4=256

在这里插入图片描述

#inplanes是指此上个模块的输出通道数,planes是当前模块的输入通道数,是为了衔接时使用。
    def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
                 base_width=64, dilation=1, norm_layer=None):
        super(Bottleneck, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        width = int(planes * (base_width / 64.)) * groups
        # Both self.conv2 and self.downsample layers downsample the input when stride != 1
        self.conv1 = conv1x1(inplanes, width)
        self.bn1 = norm_layer(width)

        self.conv2 = conv3x3(width, width, stride, groups, dilation)
        self.bn2 = norm_layer(width)

        self.conv3 = conv1x1(width, planes * self.expansion)
        self.bn3 = norm_layer(planes * self.expansion)

        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride#将stride保存下来作为其判断改变特征图尺寸的依据
    def forward(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:#在maxpool与stage1以及stage1与stage2的交界处特征图形状不同,需要转换
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)

        return out

Resnet代码:

class ResNet(nn.Module):

    def __init__(self, block, layers, num_classes=1000, zero_init_residual=False,
                 groups=1, width_per_group=64, replace_stride_with_dilation=None,
                 norm_layer=None):
        super(ResNet, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        self._norm_layer = norm_layer

        self.inplanes = 64 #maxpool的输出通道数为64
        self.dilation = 1
        if replace_stride_with_dilation is None:
            # each element in the tuple indicates if we should replace
            # the 2x2 stride with a dilated convolution instead
            replace_stride_with_dilation = [False, False, False]
        if len(replace_stride_with_dilation) != 3:
            raise ValueError("replace_stride_with_dilation should be None "
                             "or a 3-element tuple, got {}".format(replace_stride_with_dilation))
        self.groups = groups
        self.base_width = width_per_group
        self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3,
                               bias=False)
        self.bn1 = norm_layer(self.inplanes)
        self.relu = nn.ReLU(inplace=True)

        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

        self.layer1 = self._make_layer(block, 64, layers[0])
        #在stage中的stride=1,其他的stage中stride=2,也就是在浅层不使用bottleneck,
        #block是指Bottleneck模块
        #64是此stage的每个block的第一个conv的输出通道数,主要是为了衔接
		#layers是指此模块循环的次数
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2, 
                                       dilate=replace_stride_with_dilation[0])
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
                                       dilate=replace_stride_with_dilation[1])
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2,
                                       dilate=replace_stride_with_dilation[2])
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(512 * block.expansion, num_classes)
        #参数初始化
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

        # Zero-initialize the last BN in each residual branch,
        # so that the residual branch starts with zeros, and each residual block behaves like an identity.
        # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
        if zero_init_residual:
            for m in self.modules():
                if isinstance(m, Bottleneck):
                    nn.init.constant_(m.bn3.weight, 0)
                elif isinstance(m, BasicBlock):
                    nn.init.constant_(m.bn2.weight, 0)
    def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
    #planes是每个block的输入通道数,blocks是number of block
        norm_layer = self._norm_layer
        downsample = None
        previous_dilation = self.dilation

        if dilate:
            self.dilation *= stride
            stride = 1
        if stride != 1 or self.inplanes != planes * block.expansion:
        #stride针对的是两个stage之间的,inplanes是maxpool以及stage的输出通道数
            downsample = nn.Sequential(
                conv1x1(self.inplanes, planes * block.expansion, stride),
                norm_layer(planes * block.expansion),
            )
        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample, self.groups, 
        #block接受的是inplanes(上个stage的输出通道)、planes是当前stage的输入通道
                            self.base_width, previous_dilation, norm_layer))
        self.inplanes = planes * block.expansion #stage中第二个bottleneck,输入为4倍的输入,输出仍为此输出planes
        for _ in range(1, blocks):
            layers.append(block(self.inplanes, planes, groups=self.groups,
                                base_width=self.base_width, dilation=self.dilation,
                                norm_layer=norm_layer))

        return nn.Sequential(*layers)
    def _forward_impl(self, x):
        # See note [TorchScript super()]
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        x = self.fc(x)

        return x

    def forward(self, x):
        return self._forward_impl(x)

猜你喜欢

转载自blog.csdn.net/YJYS_ZHX/article/details/114296041
今日推荐