01.神经网络和深度学习 W3.浅层神经网络(作业:带一个隐藏层的神经网络)

选择题测试:
参考博文1
参考博文2

建立你的第一个神经网络!其有1个隐藏层。

1. 导入包

# Package imports
import numpy as np
import matplotlib.pyplot as plt
from testCases import *
import sklearn
import sklearn.datasets
import sklearn.linear_model
from planar_utils import plot_decision_boundary, sigmoid, load_planar_dataset, load_extra_datasets

%matplotlib inline

np.random.seed(1) # set a seed so that the results are consistent

2. 预览数据

  • 可视化数据
X, Y = load_planar_dataset()
# Visualize the data:
plt.scatter(X[0, :], X[1, :], c=Y, s=40, cmap=plt.cm.Spectral);

看起来像花
红色的标签为 0, 蓝色的标签为 1,我们的目标是建模将它们分开

  • 数据维度
### START CODE HERE ### (≈ 3 lines of code)
shape_X = X.shape
shape_Y = Y.shape
m = X.shape[1]  # training set size
### END CODE HERE ###

print ('The shape of X is: ' + str(shape_X))
print ('The shape of Y is: ' + str(shape_Y))
print ('I have m = %d training examples!' % (m))
The shape of X is: (2, 400)
The shape of Y is: (1, 400)
I have m = 400 training examples!

3. 逻辑回归

# Train the logistic regression classifier
clf = sklearn.linear_model.LogisticRegressionCV();
clf.fit(X.T, Y.T);
# Plot the decision boundary for logistic regression
plot_decision_boundary(lambda x: clf.predict(x), X, Y)
plt.title("Logistic Regression")

# Print accuracy
LR_predictions = clf.predict(X.T)
print ('Accuracy of logistic regression: %d ' % float((np.dot(Y,LR_predictions) + np.dot(1-Y,1-LR_predictions))/float(Y.size)*100) +
       '% ' + "(percentage of correctly labelled datapoints)")
Accuracy of logistic regression: 47 % (percentage of correctly labelled datapoints)

在这里插入图片描述
数据集是线性不可分的,逻辑回归变现的不好,下面看看神经网络怎么样。

4. 神经网络

模型如下:

在这里插入图片描述
对于一个样本 x ( i ) x^{(i)} 而言:
z [ 1 ] ( i ) = W [ 1 ] x ( i ) + b [ 1 ] ( i ) z^{[1] (i)} = W^{[1]} x^{(i)} + b^{[1] (i)}
a [ 1 ] ( i ) = tanh ( z [ 1 ] ( i ) ) a^{[1] (i)} = \tanh(z^{[1] (i)})
z [ 2 ] ( i ) = W [ 2 ] a [ 1 ] ( i ) + b [ 2 ] ( i ) z^{[2] (i)} = W^{[2]} a^{[1] (i)} + b^{[2] (i)}
y ^ ( i ) = a [ 2 ] ( i ) = σ ( z [ 2 ] ( i ) ) \hat{y}^{(i)} = a^{[2] (i)} = \sigma(z^{ [2] (i)})

y prediction ( i ) = { 1  if  a [ 2 ] ( i ) > 0.5 0  otherwise  y_{\text {prediction}}^{(i)}=\left\{\begin{array}{ll}1 & \text { if } a^{[2](i)}>0.5 \\ 0 & \text { otherwise }\end{array}\right.

得到所有的样本的预测值后,计算损失:
J = 1 m i = 0 m ( y ( i ) log ( a [ 2 ] ( i ) ) + ( 1 y ( i ) ) log ( 1 a [ 2 ] ( i ) ) ) J = - \frac{1}{m} \sum\limits_{i = 0}^{m} \large\left(\small y^{(i)}\log\left(a^{[2] (i)}\right) + (1-y^{(i)})\log\left(1- a^{[2] (i)}\right) \large \right) \small

建立神经网络的一般方法:

  • 1、定义神经网络结构(输入,隐藏单元等)
  • 2、初始化模型的参数
  • 3、循环:
    —— a、实现正向传播
    —— b、计算损失
    —— c、实现反向传播,计算梯度
    —— d、更新参数(梯度下降)

编写辅助函数,计算步骤1-3
将它们合并到 nn_model()的函数中
学习正确的参数,对新数据进行预测

4.1 定义神经网络结构

  • 定义每层的节点个数
# GRADED FUNCTION: layer_sizes

def layer_sizes(X, Y):
    """
    Arguments:
    X -- input dataset of shape (input size, number of examples)
    Y -- labels of shape (output size, number of examples)
    
    Returns:
    n_x -- the size of the input layer
    n_h -- the size of the hidden layer
    n_y -- the size of the output layer
    """
    ### START CODE HERE ### (≈ 3 lines of code)
    n_x = X.shape[0] # size of input layer
    n_h = 4
    n_y = Y.shape[0] # size of output layer
    ### END CODE HERE ###
    return (n_x, n_h, n_y)

4.2 初始化模型参数

  • 随机初始化权重 w,偏置 b 初始化为 0
# GRADED FUNCTION: initialize_parameters

def initialize_parameters(n_x, n_h, n_y):
    """
    Argument:
    n_x -- size of the input layer
    n_h -- size of the hidden layer
    n_y -- size of the output layer
    
    Returns:
    params -- python dictionary containing your parameters:
                    W1 -- weight matrix of shape (n_h, n_x)
                    b1 -- bias vector of shape (n_h, 1)
                    W2 -- weight matrix of shape (n_y, n_h)
                    b2 -- bias vector of shape (n_y, 1)
    """
    
    np.random.seed(2) # we set up a seed so that your output matches ours although the initialization is random.
    
    ### START CODE HERE ### (≈ 4 lines of code)
    W1 = np.random.randn(n_h, n_x)*0.01 # randn 标准正态分布
    b1 = np.zeros((n_h, 1))
    W2 = np.random.randn(n_y, n_h)*0.01
    b2 = np.zeros((n_y, 1))
    ### END CODE HERE ###
    
    assert (W1.shape == (n_h, n_x))
    assert (b1.shape == (n_h, 1))
    assert (W2.shape == (n_y, n_h))
    assert (b2.shape == (n_y, 1))
    
    parameters = {"W1": W1,
                  "b1": b1,
                  "W2": W2,
                  "b2": b2}
    
    return parameters

4.3 循环

4.3.1 前向传播

  • 根据上面的公式,编写代码
# GRADED FUNCTION: forward_propagation

def forward_propagation(X, parameters):
    """
    Argument:
    X -- input data of size (n_x, m)
    parameters -- python dictionary containing your parameters 
    (output of initialization function)
    
    Returns:
    A2 -- The sigmoid output of the second activation
    cache -- a dictionary containing "Z1", "A1", "Z2" and "A2"
    """
    # Retrieve each parameter from the dictionary "parameters"
    ### START CODE HERE ### (≈ 4 lines of code)
    W1 = parameters['W1']
    b1 = parameters['b1']
    W2 = parameters['W2']
    b2 = parameters['b2']
    ### END CODE HERE ###
    
    # Implement Forward Propagation to calculate A2 (probabilities)
    ### START CODE HERE ### (≈ 4 lines of code)
    Z1 = np.dot(W1, X) + b1
    A1 = np.tanh(Z1)
    Z2 = np.dot(W2, A1) + b2
    A2 = sigmoid(Z2)
    ### END CODE HERE ###
    
    assert(A2.shape == (1, X.shape[1]))
    
    cache = {"Z1": Z1,
             "A1": A1,
             "Z2": Z2,
             "A2": A2}
    
    return A2, cache

4.3.2 计算损失

  • 计算了 A2,也就是每个样本的预测值,计算损失
    J = 1 m i = 0 m ( y ( i ) log ( a [ 2 ] ( i ) ) + ( 1 y ( i ) ) log ( 1 a [ 2 ] ( i ) ) ) J = - \frac{1}{m} \sum\limits_{i = 0}^{m} \large\left(\small y^{(i)}\log\left(a^{[2] (i)}\right) + (1-y^{(i)})\log\left(1- a^{[2] (i)}\right) \large \right) \small
# GRADED FUNCTION: compute_cost

def compute_cost(A2, Y, parameters):
    """
    Computes the cross-entropy cost given in equation (13)
    
    Arguments:
    A2 -- The sigmoid output of the second activation, of shape (1, number of examples)
    Y -- "true" labels vector of shape (1, number of examples)
    parameters -- python dictionary containing your parameters W1, b1, W2 and b2
    
    Returns:
    cost -- cross-entropy cost given equation (13)
    """
    
    m = Y.shape[1] # number of example

    # Compute the cross-entropy cost
    ### START CODE HERE ### (≈ 2 lines of code)
    logprobs = Y*np.log(A2)+(1-Y)*np.log(1-A2)
    cost = -np.sum(logprobs)/m
    ### END CODE HERE ###
    
    cost = np.squeeze(cost)     # makes sure cost is the dimension we expect. 
                                # E.g., turns [[17]] into 17 
    assert(isinstance(cost, float))
    
    return cost

4.3.3 后向传播

一些公式如下:
在这里插入图片描述
激活函数的导数,请查阅

  • sigmoid
    在这里插入图片描述
    a = g ( z ) ; g ( z ) = d d z g ( z ) = a ( 1 a ) a=g(z) ;\quad g^{\prime}(z)=\frac{d}{d z} g(z)=a(1-a)
  • tanh
    在这里插入图片描述
    a = g ( z ) ; g ( z ) = d d z g ( z ) = 1 a 2 a=g(z) ; \quad g^{\prime}(z)=\frac{d}{d z} g(z)=1-a^2

sigmoid 下损失函数求导

# GRADED FUNCTION: backward_propagation

def backward_propagation(parameters, cache, X, Y):
    """
    Implement the backward propagation using the instructions above.
    
    Arguments:
    parameters -- python dictionary containing our parameters 
    cache -- a dictionary containing "Z1", "A1", "Z2" and "A2".
    X -- input data of shape (2, number of examples)
    Y -- "true" labels vector of shape (1, number of examples)
    
    Returns:
    grads -- python dictionary containing your gradients with respect to different parameters
    """
    m = X.shape[1]
    
    # First, retrieve W1 and W2 from the dictionary "parameters".
    ### START CODE HERE ### (≈ 2 lines of code)
    W1 = parameters['W1']
    W2 = parameters['W2']
    ### END CODE HERE ###
        
    # Retrieve also A1 and A2 from dictionary "cache".
    ### START CODE HERE ### (≈ 2 lines of code)
    A1 = cache['A1']
    A2 = cache['A2']
    ### END CODE HERE ###
    
    # Backward propagation: calculate dW1, db1, dW2, db2. 
    ### START CODE HERE ### (≈ 6 lines of code, corresponding to 6 equations on slide above)
    dZ2 = A2-Y
    dW2 = np.dot(dZ2, A1.T)/m
    db2 = np.sum(dZ2, axis=1, keepdims=True)/m
    dZ1 = np.dot(W2.T, dZ2)*(1-np.power(A1, 2))
    dW1 = np.dot(dZ1, X.T)/m
    db1 = np.sum(dZ1, axis=1, keepdims=True)/m
    ### END CODE HERE ###
    
    grads = {"dW1": dW1,
             "db1": db1,
             "dW2": dW2,
             "db2": db2}
    
    return grads

4.3.4 梯度下降

  • 选取合适的学习率,学习率太大,会产生震荡,收敛慢,甚至不收敛
# GRADED FUNCTION: update_parameters

def update_parameters(parameters, grads, learning_rate = 1.2):
    """
    Updates parameters using the gradient descent update rule given above
    
    Arguments:
    parameters -- python dictionary containing your parameters 
    grads -- python dictionary containing your gradients 
    
    Returns:
    parameters -- python dictionary containing your updated parameters 
    """
    # Retrieve each parameter from the dictionary "parameters"
    ### START CODE HERE ### (≈ 4 lines of code)
    W1 = parameters['W1']
    b1 = parameters['b1']
    W2 = parameters['W2']
    b2 = parameters['b2']
    ### END CODE HERE ###
    
    # Retrieve each gradient from the dictionary "grads"
    ### START CODE HERE ### (≈ 4 lines of code)
    dW1 = grads['dW1']
    db1 = grads['db1']
    dW2 = grads['dW2']
    db2 = grads['db2']
    ## END CODE HERE ###
    
    # Update rule for each parameter
    ### START CODE HERE ### (≈ 4 lines of code)
    W1 = W1 - learning_rate * dW1
    b1 = b1 - learning_rate * db1
    W2 = W2 - learning_rate * dW2
    b2 = b2 - learning_rate * db2
    ### END CODE HERE ###
    
    parameters = {"W1": W1,
                  "b1": b1,
                  "W2": W2,
                  "b2": b2}
    
    return parameters

4.4 组建Model

  • 将上面的函数以正确顺序放在 model 里
# GRADED FUNCTION: nn_model

def nn_model(X, Y, n_h, num_iterations = 10000, print_cost=False):
    """
    Arguments:
    X -- dataset of shape (2, number of examples)
    Y -- labels of shape (1, number of examples)
    n_h -- size of the hidden layer
    num_iterations -- Number of iterations in gradient descent loop
    print_cost -- if True, print the cost every 1000 iterations
    
    Returns:
    parameters -- parameters learnt by the model. They can then be used to predict.
    """
    
    np.random.seed(3)
    n_x = layer_sizes(X, Y)[0]
    n_y = layer_sizes(X, Y)[2]
    
    # Initialize parameters, then retrieve W1, b1, W2, b2. Inputs: "n_x, n_h, n_y". 
    # Outputs = "W1, b1, W2, b2, parameters".
    ### START CODE HERE ### (≈ 5 lines of code)
    parameters = initialize_parameters(n_x, n_h, n_y)
    W1 = parameters['W1']
    b1 = parameters['b1']
    W2 = parameters['W2']
    b2 = parameters['b2']
    ### END CODE HERE ###
    
    # Loop (gradient descent)

    for i in range(0, num_iterations):
         
        ### START CODE HERE ### (≈ 4 lines of code)
        # Forward propagation. Inputs: "X, parameters". Outputs: "A2, cache".
        A2, cache = forward_propagation(X, parameters)
        
        # Cost function. Inputs: "A2, Y, parameters". Outputs: "cost".
        cost = compute_cost(A2, Y, parameters)
 
        # Backpropagation. Inputs: "parameters, cache, X, Y". Outputs: "grads".
        grads = backward_propagation(parameters, cache, X, Y)
 
        # Gradient descent parameter update. Inputs: "parameters, grads". Outputs: "parameters".
        parameters = update_parameters(parameters, grads, learning_rate=1.2)
        
        ### END CODE HERE ###
        
        # Print the cost every 1000 iterations
        if print_cost and i % 1000 == 0:
            print ("Cost after iteration %i: %f" %(i, cost))

    return parameters

4.5 预测

p r e d i c t i o n s = { 1 if  a c t i v a t i o n > 0.5 0 otherwise predictions = \begin{cases} 1 & \text{if}\ activation > 0.5 \\ 0 & \text{otherwise} \end{cases}

# GRADED FUNCTION: predict

def predict(parameters, X):
    """
    Using the learned parameters, predicts a class for each example in X
    
    Arguments:
    parameters -- python dictionary containing your parameters 
    X -- input data of size (n_x, m)
    
    Returns
    predictions -- vector of predictions of our model (red: 0 / blue: 1)
    """
    
    # Computes probabilities using forward propagation, and classifies to 0/1 using 0.5 as the threshold.
    ### START CODE HERE ### (≈ 2 lines of code)
    A2, cache = forward_propagation(X, parameters)
    predictions = (A2 > 0.5)
    ### END CODE HERE ###
    
    return predictions
  • 建立一个含有1个隐藏层(4个单元)的神经网络模型
# Build a model with a n_h-dimensional hidden layer
parameters = nn_model(X, Y, n_h = 4, num_iterations = 10000, print_cost=True)

# Plot the decision boundary
plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y)
plt.title("Decision Boundary for hidden layer size " + str(4))
Cost after iteration 0: 0.693048
Cost after iteration 1000: 0.288083
Cost after iteration 2000: 0.254385
Cost after iteration 3000: 0.233864
Cost after iteration 4000: 0.226792
Cost after iteration 5000: 0.222644
Cost after iteration 6000: 0.219731
Cost after iteration 7000: 0.217504
Cost after iteration 8000: 0.219550
Cost after iteration 9000: 0.218633

决策边界

# Print accuracy
predictions = predict(parameters, X)
print ('Accuracy: %d' % float((np.dot(Y,predictions.T) + np.dot(1-Y,1-predictions.T))/float(Y.size)*100) + '%')
Accuracy: 90%

可以看出模型较好地将两类点分开了!准确率 90%,比逻辑回归 47%高不少。

4.6 调节隐藏层单元个数

plt.figure(figsize=(16, 32))
hidden_layer_sizes = [1, 2, 3, 4, 5, 20, 50]
for i, n_h in enumerate(hidden_layer_sizes):
    plt.subplot(5, 2, i+1)
    plt.title('Hidden Layer of size %d' % n_h)
    parameters = nn_model(X, Y, n_h, num_iterations = 5000)
    plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y)
    predictions = predict(parameters, X)
    accuracy = float((np.dot(Y,predictions.T) + np.dot(1-Y,1-predictions.T))/float(Y.size)*100)
    print ("Accuracy for {} hidden units: {} %".format(n_h, accuracy))
Accuracy for 1 hidden units: 67.5 %
Accuracy for 2 hidden units: 67.25 %
Accuracy for 3 hidden units: 90.75 %
Accuracy for 4 hidden units: 90.5 %
Accuracy for 5 hidden units: 91.25 %
Accuracy for 20 hidden units: 90.5 %
Accuracy for 50 hidden units: 90.75 %

不同的隐藏单元数量下的分类效果对比
可以看出:

  • 较大的模型(具有更多隐藏单元)能够更好地适应训练集,直到最大的模型过拟合了
  • 最好的隐藏层大小似乎是n_h=5左右。这个值似乎很适合数据,而不会引起明显的过拟合
  • 稍后还将了解正则化,它允许你使用非常大的模型(如n_h=50),而不会出现太多过拟合

4.7 更改激活函数

  • 将隐藏层的激活函数更改为 sigmoid 函数,准确率没有使用tanh的高,tanh任何场合几乎都优sigmoid
Accuracy for 1 hidden units: 50.5 %
Accuracy for 2 hidden units: 59.0 %
Accuracy for 3 hidden units: 56.75 %
Accuracy for 4 hidden units: 50.0 %
Accuracy for 5 hidden units: 62.25000000000001 %
Accuracy for 20 hidden units: 85.5 %
Accuracy for 50 hidden units: 87.0 %

在这里插入图片描述

  • 将隐藏层的激活函数更改为 ReLu 函数,似乎没有用,感觉是需要更多的隐藏层,才能达到效果
def relu(X):
    return np.maximum(0, X)
Accuracy for 1 hidden units: 50.0 %
Accuracy for 2 hidden units: 50.0 %
Accuracy for 3 hidden units: 50.0 %
Accuracy for 4 hidden units: 50.0 %
Accuracy for 5 hidden units: 50.0 %
Accuracy for 20 hidden units: 50.0 %
Accuracy for 50 hidden units: 50.0 %

报了些警告

C:\Users\mingm\AppData\Roaming\Python\Python37\site-packages\
ipykernel_launcher.py:20: RuntimeWarning: divide by zero encountered in log
C:\Users\mingm\AppData\Roaming\Python\Python37\site-packages\
ipykernel_launcher.py:20: RuntimeWarning: invalid value encountered in multiply
C:\Users\mingm\AppData\Roaming\Python\Python37\site-packages\
ipykernel_launcher.py:35: RuntimeWarning: overflow encountered in power
C:\Users\mingm\AppData\Roaming\Python\Python37\site-packages\
ipykernel_launcher.py:35: RuntimeWarning: invalid value encountered in multiply
C:\Users\mingm\AppData\Roaming\Python\Python37\site-packages
\ipykernel_launcher.py:35: RuntimeWarning: overflow encountered in multiply

在这里插入图片描述

4.8 更改学习率

  • 采用 tanh 激活函数,调整学习率检查效果

学习率 2.0

Accuracy for 1 hidden units: 67.5 %
Accuracy for 2 hidden units: 67.25 %
Accuracy for 3 hidden units: 90.75 %
Accuracy for 4 hidden units: 90.75 %
Accuracy for 5 hidden units: 90.25 %
Accuracy for 20 hidden units: 91.0 %
Accuracy for 50 hidden units: 91.25 %  best

学习率 1.5

Accuracy for 1 hidden units: 67.5 %
Accuracy for 2 hidden units: 67.25 %
Accuracy for 3 hidden units: 90.75 %
Accuracy for 4 hidden units: 89.75 %
Accuracy for 5 hidden units: 90.5 %
Accuracy for 20 hidden units: 91.0 %  best
Accuracy for 50 hidden units: 90.75 %

学习率 1.2

Accuracy for 1 hidden units: 67.5 %
Accuracy for 2 hidden units: 67.25 %
Accuracy for 3 hidden units: 90.75 %
Accuracy for 4 hidden units: 90.5 %
Accuracy for 5 hidden units: 91.25 % best
Accuracy for 20 hidden units: 90.5 %
Accuracy for 50 hidden units: 90.75 %

学习率 1.0

Accuracy for 1 hidden units: 67.25 %
Accuracy for 2 hidden units: 67.0 %
Accuracy for 3 hidden units: 90.75 %
Accuracy for 4 hidden units: 90.5 %
Accuracy for 5 hidden units: 91.0 %  best
Accuracy for 20 hidden units: 91.0 %  best
Accuracy for 50 hidden units: 90.75 %

学习率 0.5

Accuracy for 1 hidden units: 67.25 %
Accuracy for 2 hidden units: 66.5 %
Accuracy for 3 hidden units: 89.25 %
Accuracy for 4 hidden units: 90.0 %
Accuracy for 5 hidden units: 89.75 %
Accuracy for 20 hidden units: 90.0 % best
Accuracy for 50 hidden units: 89.75 %

学习率 0.1

Accuracy for 1 hidden units: 67.0 %
Accuracy for 2 hidden units: 64.75 %
Accuracy for 3 hidden units: 88.25 %
Accuracy for 4 hidden units: 88.0 %
Accuracy for 5 hidden units: 88.5 %
Accuracy for 20 hidden units: 88.75 %  best
Accuracy for 50 hidden units: 88.75 %  best

大致规律:

  • 学习率太小,造成学习不充分,准确率较低
  • 学习率越大,需要越多的隐藏单元来提高准确率?(请大佬指点)

4.9 其他数据集下的表现

均为tanh激活函数,学习率1.2

  • dataset = "noisy_circles"
    在这里插入图片描述
Accuracy for 1 hidden units: 62.5 %
Accuracy for 2 hidden units: 72.5 %
Accuracy for 3 hidden units: 84.0 % best
Accuracy for 4 hidden units: 83.0 %
Accuracy for 5 hidden units: 83.5 %
Accuracy for 20 hidden units: 79.5 %
Accuracy for 50 hidden units: 83.5 %

在这里插入图片描述

  • dataset = "noisy_moons"
    在这里插入图片描述
Accuracy for 1 hidden units: 86.0 %
Accuracy for 2 hidden units: 88.0 %
Accuracy for 3 hidden units: 97.0 % best
Accuracy for 4 hidden units: 96.5 %
Accuracy for 5 hidden units: 96.0 %
Accuracy for 20 hidden units: 86.0 %
Accuracy for 50 hidden units: 86.0 %

在这里插入图片描述

  • dataset = "blobs"
    在这里插入图片描述
Accuracy for 1 hidden units: 67.0 %
Accuracy for 2 hidden units: 67.0 %
Accuracy for 3 hidden units: 83.0 %
Accuracy for 4 hidden units: 83.0 %
Accuracy for 5 hidden units: 83.0 %
Accuracy for 20 hidden units: 86.0 % best
Accuracy for 50 hidden units: 83.5 %

在这里插入图片描述

  • dataset = "gaussian_quantiles"
    在这里插入图片描述
Accuracy for 1 hidden units: 65.0 %
Accuracy for 2 hidden units: 79.5 %
Accuracy for 3 hidden units: 97.0 %
Accuracy for 4 hidden units: 97.0 %
Accuracy for 5 hidden units: 100.0 % best
Accuracy for 20 hidden units: 97.5 %
Accuracy for 50 hidden units: 96.0 %

在这里插入图片描述
不同的数据集下,表现的效果也不太一样。


我的CSDN博客地址 https://michael.blog.csdn.net/

长按或扫码关注我的公众号(Michael阿明),一起加油、一起学习进步!
Michael阿明

猜你喜欢

转载自blog.csdn.net/qq_21201267/article/details/108276357