二项分布 (Binomial Distribution)

假设一个随机变量 X X 服从参数为 n N n\in\mathbb{N} p [ 0 , 1 ] p\in [0,1] 的二项分布, 即 X B ( N , p ) X\sim B(N, p) , 则 X X 的取值为 k k 的概率为:
Pr ( X = k ) = C n k ( 1 p ) n k p k \Pr(X=k)=C_n^k(1-p)^{n-k}p^k
其中 k = 0 , , n k=0, \cdots, n

Pr ( X = k ) \Pr(X=k) 的含义为, 我们掷一枚硬币, 每次正面朝上的概率为 p p ; 我们掷这枚硬币的 n n 次中, 正面朝上的次数为 k k 次的概率.

μ = E ( X ) = k = 0 n k Pr ( X = k ) \mu = E(X) = \sum_{k = 0}^nk\cdot\Pr(X=k)
= k = 0 n k n ! ( n k ) ! k ! ( 1 p ) n k p k = \sum_{k = 0}^nk\cdot\frac{n!}{(n-k)!k!}\cdot(1-p)^{n-k}p^k
= n k = 1 n ( n 1 ) ! ( n k ) ! ( k 1 ) ! ( 1 p ) n k p k = n\sum_{k=1}^n\frac{(n-1)!}{(n-k)!(k-1)!}\cdot(1-p)^{n - k}p^k
= n k = 0 n 1 ( n 1 ) ! ( n k 1 ) ! k ! ( 1 p ) n k 1 p k + 1 = n\sum_{k = 0}^{n-1}\frac{(n-1)!}{(n-k-1)!k!}\cdot(1-p)^{n-k-1}p^{k + 1}
= n p k = 0 n 1 ( n 1 ) ! ( ( n 1 ) k ) ! k ! ( 1 p ) ( n 1 ) k p k = np\sum_{k = 0}^{n-1}\frac{(n-1)!}{((n-1)-k)!k!}\cdot(1-p)^{(n-1)-k}p^k
= n p k = 0 n 1 C k n 1 ( 1 p ) ( n 1 ) k p k = np\sum_{k=0}^{n-1}C_{k}^{n-1}(1-p)^{(n-1)-k}p^k
= n p = np

E ( X 2 ) = k = 0 n k 2 Pr ( X = k ) E(X^2) = \sum_{k= 0}^nk^2\cdot\Pr(X=k)
= k = 0 n k 2 n ! ( n k ) ! k ! ( 1 p ) n k p k = \sum_{k = 0}^nk^2\cdot\frac{n!}{(n-k)!k!}\cdot(1-p)^{n-k}p^k
= k = 0 n k ( k 1 ) n ! ( n k ) ! k ! ( 1 p ) n k p k + k = 0 n k n ! ( n k ) ! k ! ( 1 p ) n k p k = \sum_{k=0}^nk(k-1)\frac{n!}{(n-k)!k!}(1-p)^{n-k}p^k + \sum_{k=0}^nk\frac{n!}{(n-k)!k!}(1-p)^{n-k}p^k
= k = 0 n k ( k 1 ) n ! ( n k ) ! k ! ( 1 p ) n k p k + E ( X ) = \sum_{k=0}^nk(k-1)\frac{n!}{(n-k)!k!}(1-p)^{n-k}p^k + E(X)
= k = 2 n n ! ( n k ) ! ( k 2 ) ( 1 p ) n k p k + E ( X ) = \sum_{k=2}^n\frac{n!}{(n-k)!(k-2)}(1-p)^{n-k}p^k + E(X)
= n ( n 1 ) k = 0 n 2 n 2 ( n k 2 ) ! k ! ( 1 p ) n k 2 p k + 2 + E ( X ) = n(n-1)\sum_{k=0}^{n-2}\frac{n-2}{(n-k-2)!k!}(1-p)^{n-k-2}p^{k+2} + E(X)
= n ( n 1 ) p 2 k = 0 n C k n 2 ( 1 p ) ( n 2 ) k p k + E ( X ) = n(n-1)p^2\sum_{k=0}^nC_{k}^{n-2}(1-p)^{(n-2)-k}p^k + E(X)
= n ( n 1 ) p 2 + n p = n(n-1)p^2 + np

σ 2 = V a r ( X ) \sigma^2=Var(X)
= E ( ( X μ ) 2 ) = E((X-\mu)^2)
= E ( X 2 2 μ X + μ 2 ) = E(X^2 - 2\mu X + \mu^2)
= E ( X 2 ) μ 2 = E(X^2) - \mu^2
= n ( n 1 ) p 2 + n p ( n p ) 2 = n(n-1)p^2 + np -(np)^2
= n p ( 1 p ) = np(1-p)

猜你喜欢

转载自blog.csdn.net/nankai0912678/article/details/105881738
今日推荐