几何分布 (Geometric Distribution)

本文内容参考了此处.

若随机变量 X X 服从参数为 p p 的几何分布, 则有
Pr ( X = k ) = ( 1 p ) k p \Pr(X=k) = (1 - p)^kp
其中 k = 0 , 1 , k=0, 1, \cdots

  1. E ( X ) = 1 p p E(X) = \frac{1-p}{p}
    证明:
    E ( X ) = k = 0 + k Pr ( X = k ) = k = 0 + k ( 1 p ) k p E(X) = \sum_{k=0}^{+\infty}k\Pr(X=k) = \sum_{k=0}^{+\infty}k(1-p)^kp
    = p ( 1 p ) k = 0 + k ( 1 p ) k 1 =p(1-p)\sum_{k=0}^{+\infty}k(1-p)^{k-1}
    q = 1 p q=1-p , 则有
    k = 0 + k ( 1 p ) k 1 \sum_{k=0}^{+\infty}k(1-p)^{k-1}
    = k = 1 + k q k 1 =\sum_{k=1}^{+\infty}kq^{k-1}
    = [ k = 1 + q k ] =[\sum_{k=1}^{+\infty}q^k]'
    = [ q 1 q ] =[\frac{q}{1-q}]'
    = 1 p 2 =\frac{1}{p^2}
    E ( X ) = p ( 1 p ) 1 p 2 = 1 p p \therefore E(X)=p(1-p)\cdot\frac{1}{p^2} = \frac{1 - p}{p}

  2. V a r ( X ) = 1 p p 2 Var(X) = \frac{1-p}{p^2}
    证明:
    q = 1 p q = 1-p , 则有
    E ( X 2 ) = k = 0 + k 2 p q k E(X^2) = \sum_{k=0}^{+\infty}k^2pq^k
    = p q k = 1 + k 2 q k 1 =pq\sum_{k=1}^{+\infty}k^2q^{k-1}
    = p q ( k = 1 + k ( k + 1 ) q k 1 k = 1 + k q k 1 ) =pq(\sum_{k=1}^{+\infty}k(k+1)q^{k-1} - \sum_{k=1}^{+\infty}kq^{k-1})
    = p q ( ( k = 1 + q k + 1 ) 1 p 2 ) =pq((\sum_{k=1}^{+\infty}q^{k+1})'' - \frac{1}{p^2})
    = p q ( ( q 2 1 q ) 1 p 2 ) =pq((\frac{q^2}{1-q})'' - \frac{1}{p^2})
    = p q ( 2 p 3 1 p 2 ) =pq(\frac{2}{p^3} - \frac{1}{p^2})
    = 2 q p q p 2 =\frac{2q - pq}{p^2}
    V a r ( X ) = E ( X 2 ) μ 2 \therefore Var(X) = E(X^2) - \mu^2
    = 2 q p q p 2 q 2 p 2 =\frac{2q -pq}{p^2} - \frac{q^2}{p^2}
    = q p 2 = 1 p p 2 =\frac{q}{p^2}=\frac{1-p}{p^2}

猜你喜欢

转载自blog.csdn.net/nankai0912678/article/details/106237222