【Kaggle】Intermediate Machine Learning(缺失值+文字特征处理)


from https://www.kaggle.com/learn/intermediate-machine-learning

下一篇 :【Kaggle】Intermediate Machine Learning(管道+交叉验证)

1. Introduction

  • 按照教程给的7个特征,给定5种参数下的随机森林模型,选出mae误差最小的,进行提交
import pandas as pd
from sklearn.model_selection import train_test_split

# Read the data
X_full = pd.read_csv('../input/train.csv', index_col='Id')
X_test_full = pd.read_csv('../input/test.csv', index_col='Id')

# Obtain target and predictors
y = X_full.SalePrice
features = ['LotArea', 'YearBuilt', '1stFlrSF', '2ndFlrSF', 'FullBath', 'BedroomAbvGr', 'TotRmsAbvGrd']
X = X_full[features].copy()
X_test = X_test_full[features].copy()

# Break off validation set from training data
X_train, X_valid, y_train, y_valid = train_test_split(X, y, train_size=0.8, test_size=0.2,
                                                      random_state=0)
from sklearn.ensemble import RandomForestRegressor

# Define the models,定义了5种参数的随机森林模型
model_1 = RandomForestRegressor(n_estimators=50, random_state=0)
model_2 = RandomForestRegressor(n_estimators=100, random_state=0)
model_3 = RandomForestRegressor(n_estimators=100, criterion='mae', random_state=0)
model_4 = RandomForestRegressor(n_estimators=200, min_samples_split=20, random_state=0)
model_5 = RandomForestRegressor(n_estimators=100, max_depth=7, random_state=0)

models = [model_1, model_2, model_3, model_4, model_5]

from sklearn.metrics import mean_absolute_error

# Function for comparing different models
def score_model(model, X_t=X_train, X_v=X_valid, y_t=y_train, y_v=y_valid):
    model.fit(X_t, y_t)
    preds = model.predict(X_v)
    return mean_absolute_error(y_v, preds)
# 找出误差最小的模型
for i in range(0, len(models)):
    mae = score_model(models[i])
    print("Model %d MAE: %d" % (i+1, mae))

best_model = models[2]
my_model = best_model

my_model.fit(X, y)
# Generate test predictions
preds_test = my_model.predict(X_test)

# Save predictions in format used for competition scoring
output = pd.DataFrame({'Id': X_test.index,
                       'SalePrice': preds_test})
output.to_csv('submission.csv', index=False)

评分:mae误差 20998.83780

2. Missing Values 缺失值处理

缺失值的处理:

  • 丢弃整列,缺点是信息丢失严重
cols_with_missing = [col for col in X_train.columns
                    if X_train[col].isnull().any()] # Your code here

# Fill in the lines below: drop columns in training and validation data
reduced_X_train = X_train.drop(cols_with_missing,axis=1)
reduced_X_valid = X_valid.drop(cols_with_missing,axis=1)
  • 差值填补,比如填充均值等
from sklearn.impute import SimpleImputer

# Fill in the lines below: imputation
help(SimpleImputer)
imp = SimpleImputer()# 默认以均值进行填补
# imp = SimpleImputer(strategy="median") # 中位数填补
imputed_X_train = pd.DataFrame(imp.fit_transform(X_train))# 拟合,填补
imputed_X_valid = pd.DataFrame(imp.transform(X_valid))#填补

# Fill in the lines below: imputation removed column names; put them back
imputed_X_train.columns = X_train.columns # 差值去除了特征名称,再填上 
imputed_X_valid.columns = X_valid.columns

SimpleImputer 参考如下

class SimpleImputer(_BaseImputer)
 |  SimpleImputer(missing_values=nan, strategy='mean', fill_value=None,
 				 verbose=0, copy=True, add_indicator=False)
 |  
 |  Imputation transformer for completing missing values.
 |  
 |  Read more in the :ref:`User Guide <impute>`.
 |  
 |  Parameters
 |  ----------
 |  missing_values : number, string, np.nan (default) or None
 |      The placeholder for the missing values. All occurrences of
 |      `missing_values` will be imputed.
 |  
 |  strategy : string, default='mean'
 |      The imputation strategy.
 |  
 |      - If "mean", then replace missing values using the mean along
 |        each column. Can only be used with numeric data.
 |      - If "median", then replace missing values using the median along
 |        each column. Can only be used with numeric data.
 |      - If "most_frequent", then replace missing using the most frequent
 |        value along each column. Can be used with strings or numeric data.
 |      - If "constant", then replace missing values with fill_value. Can be
 |        used with strings or numeric data.

评分:mae误差 16619.07644

3. Categorical Variables 文字变量处理

分类变量处理方法:

  • 直接丢弃,如果没有用的话
  • Label Encoding 标记编码:比如频率:“Never” (0) < “Rarely” (1) < “Most days” (2) < “Every day” (3),将字符串分类成几类,用数字表示
  • One-Hot Encoding,会在数据里新生成一系列的列,一般来说最后一种效果最好,但是特征中值的种类过多的话,该方法会把数据集扩的比较大
# Get list of categorical variables,获取非数字类变量
s = (X_train.dtypes == 'object')
object_cols = list(s[s].index)

print("Categorical variables:")
print(object_cols)
Categorical variables:
['Type', 'Method', 'Regionname'] # 特征名称
  1. 直接丢弃
drop_X_train = X_train.select_dtypes(exclude=['object'])
drop_X_valid = X_valid.select_dtypes(exclude=['object'])
  1. Label Encoding
from sklearn.preprocessing import LabelEncoder

# Make copy to avoid changing original data 
label_X_train = X_train.copy()
label_X_valid = X_valid.copy()

# Apply label encoder to each column with categorical data
label_encoder = LabelEncoder()
for col in object_cols:
    label_X_train[col] = label_encoder.fit_transform(X_train[col])
    label_X_valid[col] = label_encoder.transform(X_valid[col])
  1. One-Hot Encoding
# Apply one-hot encoder to each column with categorical data
OH_encoder = OneHotEncoder(handle_unknown='ignore', sparse=False)
OH_cols_train = pd.DataFrame(OH_encoder.fit_transform(X_train[object_cols]))
OH_cols_valid = pd.DataFrame(OH_encoder.transform(X_valid[object_cols]))

# One-hot encoding removed index; put it back,放回idx
OH_cols_train.index = X_train.index
OH_cols_valid.index = X_valid.index

# Remove categorical columns (will replace with one-hot encoding)
num_X_train = X_train.drop(object_cols, axis=1) # 丢弃原有的文字列,只剩数字
num_X_valid = X_valid.drop(object_cols, axis=1)

# Add one-hot encoded columns to numerical features # 数字列和编码后的文本特征列合并
OH_X_train = pd.concat([num_X_train, OH_cols_train], axis=1)
OH_X_valid = pd.concat([num_X_valid, OH_cols_valid], axis=1)

遇见训练集和测试集的文字变量种类不一样:

  • 检查哪些特征在两个集合里都是一样的,不一样的话直接编码会出错
# All categorical columns
object_cols = [col for col in X_train.columns if X_train[col].dtype == "object"]

# Columns that can be safely label encoded
good_label_cols = [col for col in object_cols if 
                   set(X_train[col]) == set(X_valid[col])]
        
# Problematic columns that will be dropped from the dataset
bad_label_cols = list(set(object_cols)-set(good_label_cols))
  • 这里处理的方法是,丢弃不一致的,对一致的进行编码转换
from sklearn.preprocessing import LabelEncoder

# Drop categorical columns that will not be encoded
label_X_train = X_train.drop(bad_label_cols, axis=1)
label_X_valid = X_valid.drop(bad_label_cols, axis=1)

# Apply label encoder 
labEncoder = LabelEncoder()
for feature in set(good_label_cols):
    label_X_train[feature] = labEncoder.fit_transform(label_X_train[feature])
    label_X_valid[feature] = labEncoder.transform(label_X_valid[feature])

查看文字特征里,有多少种变量值

# Get number of unique entries in each column with categorical data
object_nunique = list(map(lambda col: X_train[col].nunique(), object_cols))
d = dict(zip(object_cols, object_nunique))

# Print number of unique entries by column, in ascending order
sorted(d.items(), key=lambda x: x[1])
[('Street', 2), # 街道有2个不同的值
 ('Utilities', 2),
 ('CentralAir', 2),
 。。。
 ('Exterior2nd', 16),
 ('Neighborhood', 25)] # 种数较多的不宜用one-hot,
 					# 数据集扩大的很厉害,可以label-encoding,或丢弃

# Columns that will be one-hot encoded
# 不同数值数 < 10 的特征进行 one-hot编码
low_cardinality_cols = [col for col in object_cols if X_train[col].nunique() < 10]

# Columns that will be dropped from the dataset
# 剩余的(两个set做差),丢弃
high_cardinality_cols = list(set(object_cols)-set(low_cardinality_cols))
from sklearn.preprocessing import OneHotEncoder

# one_hot编码器
ohEnc = OneHotEncoder(handle_unknown='ignore', sparse=False)

# 不同数值数 < 10 的特征one_hot编码
OH_X_train = pd.DataFrame(ohEnc.fit_transform(X_train[low_cardinality_cols]))
OH_X_valid = pd.DataFrame(ohEnc.transform(X_valid[low_cardinality_cols]))

# 编码后index丢失,再加上
OH_X_train.index = X_train.index
OH_X_valid.index = X_valid.index

# 数字特征(原数据丢弃文字特征,即得到)
num_X_train = X_train.drop(object_cols, axis=1)
num_X_valid = X_valid.drop(object_cols, axis=1)

# 合并 数字特征 + one_hot编码(记得恢复index)后的文字特征(特征数值种类多的丢弃了)
OH_X_train = pd.concat([OH_X_train, num_X_train], axis=1)
OH_X_valid = pd.concat([OH_X_valid, num_X_valid], axis=1)

下一篇 :【Kaggle】Intermediate Machine Learning(管道+交叉验证)

原创文章 1053 获赞 4450 访问量 61万+

猜你喜欢

转载自blog.csdn.net/qq_21201267/article/details/106043787