高斯拉普拉斯算子

高斯拉普拉斯算子(Laplacian of Gaussian,LoG)

高斯拉普拉斯算子(Laplacian of Gaussian,LoG)提取图像 f ( x , y ) f(x, y) 边缘:

  1. 图像平滑去噪,高斯低通滤波器(a convolution with a Gaussian kernel of width σ \sigma

G σ ( x , y ) = 1 2 π σ exp ( x 2 + y 2 2 σ 2 ) G_{\sigma}(x, y) = \frac{1}{\sqrt{2 \pi} \sigma} \exp \left( - \frac{x^{2} + y^{2}}{2 \sigma^{2}} \right)

  1. 边缘检测,拉普拉斯算子(Laplace operator)

( G σ ( x , y ) f ( x , y ) ) = ( G σ ( x , y ) ) f ( x , y ) = LoG f ( x , y ) \bigtriangleup (G_{\sigma}(x, y) * f(x, y)) = (\bigtriangleup G_{\sigma}(x, y)) * f(x, y) = \text{LoG} * f(x, y)

■■

卷积性质:

d d t ( h ( t ) f ( t ) ) = d d t f ( τ ) h ( t τ ) d τ = f ( τ ) d d t h ( t τ ) d τ = f ( t ) d d t h ( t ) \frac{d}{dt} (h(t) * f(t)) = \frac{d}{dt} \int f(\tau) h(t - \tau) d \tau = \int f(\tau) \frac{d}{dt} h(t - \tau) d \tau = f(t) * \frac{d}{dt} h(t)

高斯拉普拉斯算子 G σ ( x , y ) \bigtriangleup G_{\sigma}(x,y)

2 x 2 G σ ( x , y ) = 1 2 π σ x 2 σ 2 σ 4 exp ( x 2 + y 2 2 σ 2 ) \frac{\partial^{2}}{\partial x^{2}} G_{\sigma}(x, y) = \frac{1}{\sqrt{2 \pi} \sigma} \frac{x^{2} - \sigma^{2}}{\sigma^{4}} \exp \left( - \frac{x^{2} + y^{2}}{2 \sigma^{2}} \right)

2 y 2 G σ ( x , y ) = 1 2 π σ y 2 σ 2 σ 4 exp ( x 2 + y 2 2 σ 2 ) \frac{\partial^{2}}{\partial y^{2}} G_{\sigma}(x, y) = \frac{1}{\sqrt{2 \pi} \sigma} \frac{y^{2} - \sigma^{2}}{\sigma^{4}} \exp \left( - \frac{x^{2} + y^{2}}{2 \sigma^{2}} \right)

■■

x G σ ( x , y ) = 1 2 π σ x exp ( x 2 + y 2 2 σ 2 ) = x 2 π σ 3 exp ( x 2 + y 2 2 σ 2 ) \frac{\partial}{\partial x} G_{\sigma}(x, y) = \frac{1}{\sqrt{2 \pi} \sigma} \frac{\partial }{\partial x} \exp \left( - \frac{x^{2} + y^{2}}{2 \sigma^{2}} \right) = - \frac{x}{\sqrt{2 \pi} \sigma^{3}} \exp \left( - \frac{x^{2} + y^{2}}{2 \sigma^{2}} \right)

2 x 2 G σ ( x , y ) = 1 2 π σ 3 exp ( x 2 + y 2 2 σ 2 ) + x 2 2 π σ 5 exp ( x 2 + y 2 2 σ 2 ) = 1 2 π σ x 2 σ 2 σ 4 exp ( x 2 + y 2 2 σ 2 ) \frac{\partial^{2}}{\partial x^{2}} G_{\sigma}(x, y) = - \frac{1}{\sqrt{2 \pi} \sigma^{3}} \exp \left( - \frac{x^{2} + y^{2}}{2 \sigma^{2}} \right) + \frac{x^{2}}{\sqrt{2 \pi} \sigma^{5}} \exp \left( - \frac{x^{2} + y^{2}}{2 \sigma^{2}} \right) = \frac{1}{\sqrt{2 \pi} \sigma} \frac{x^{2} - \sigma^{2}}{\sigma^{4}} \exp \left( - \frac{x^{2} + y^{2}}{2 \sigma^{2}} \right)

LoG \text{LoG} 定义为:

LoG 2 x 2 G σ ( x , y ) + 2 y 2 G σ ( x , y ) = 1 2 π σ x 2 + y 2 2 σ 2 σ 4 exp ( x 2 + y 2 2 σ 2 ) \text{LoG} \triangleq \frac{\partial^{2}}{\partial x^{2}} G_{\sigma}(x, y) + \frac{\partial^{2}}{\partial y^{2}} G_{\sigma}(x, y) = \frac{1}{\sqrt{2 \pi} \sigma} \frac{x^{2} + y^{2} - 2 \sigma^{2}}{\sigma^{4}} \exp \left( - \frac{x^{2} + y^{2}}{2 \sigma^{2}} \right)

在这里插入图片描述
在这里插入图片描述
二维 5 × 5 5 \times 5 LoG \text{LoG} 算子:

[ 0 0 1 0 0 0 1 2 1 0 1 2 16 2 1 0 1 2 1 0 0 0 1 0 0 ] \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 & 0 \\ 1 & 2 & -16 & 2 & 1 \\ 0 & 1 & 2 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ \end{bmatrix}

核矩阵各元素之和必须为零(make sure that the sum (or average) of all elements of the kernel has to be zero)

边缘检测步骤:

  1. LoG滤波(applying LoG to the image)

  2. 过零检测(detection of zero-crossings in the image)

  3. 门限判决(threshold the zero-crossings to keep only those strong ones (large difference between the positive maximum and the negative minimum))

发布了103 篇原创文章 · 获赞 162 · 访问量 5万+

猜你喜欢

转载自blog.csdn.net/zhaoyin214/article/details/103690009