Pytorch 实现手写数字识别

日萌社

人工智能AI:Keras PyTorch MXNet TensorFlow PaddlePaddle 深度学习实战(不定时更新)


使用Pytorch实现手写数字识别

目标

  1. 知道如何使用Pytorch完成神经网络的构建
  2. 知道Pytorch中激活函数的使用方法
  3. 知道Pytorch中torchvision.transforms中常见图形处理函数的使用
  4. 知道如何训练模型和如何评估模型

1. 思路和流程分析

流程:

  1. 准备数据,这些需要准备DataLoader
  2. 构建模型,这里可以使用torch构造一个深层的神经网络
  3. 模型的训练
  4. 模型的保存,保存模型,后续持续使用
  5. 模型的评估,使用测试集,观察模型的好坏

2. 准备训练集和测试集

准备数据集的方法前面已经讲过,但是通过前面的内容可知,调用MNIST返回的结果中图形数据是一个Image对象,需要对其进行处理

为了进行数据的处理,接下来学习torchvision.transfroms的方法

2.1 torchvision.transforms的图形数据处理方法

2.1.1 torchvision.transforms.ToTensor

把一个取值范围是[0,255]PIL.Image或者shape(H,W,C)numpy.ndarray,转换成形状为[C,H,W]

其中(H,W,C)意思为(高,宽,通道数),黑白图片的通道数只有1,其中每个像素点的取值为[0,255],彩色图片的通道数为(R,G,B),每个通道的每个像素点的取值为[0,255],三个通道的颜色相互叠加,形成了各种颜色

示例如下:

from torchvision import transforms
import numpy as np
​
data = np.random.randint(0, 255, size=12)
img = data.reshape(2,2,3)
print(img.shape)
img_tensor = transforms.ToTensor()(img) # 转换成tensor
print(img_tensor)
print(img_tensor.shape)

输出如下:

shape:(2, 2, 3)
img_tensor:tensor([[[215, 171],
                 [ 34,  12]],
​
                [[229,  87],
                 [ 15, 237]],
​
                [[ 10,  55],
                 [ 72, 204]]], dtype=torch.int32)
new shape:torch.Size([3, 2, 2])

注意:

transforms.ToTensor对象中有__call__方法,所以可以对其示例能够传入数据获取结果

2.1.2 torchvision.transforms.Normalize(mean, std)

给定均值:mean,shape和图片的通道数相同(指的是每个通道的均值),方差:std,和图片的通道数相同(指的是每个通道的方差),将会把Tensor规范化处理。

即:Normalized_image=(image-mean)/std

例如:

 
from torchvision import transforms
import numpy as np
import torchvision
​
data = np.random.randint(0, 255, size=12)
img = data.reshape(2,2,3)
img = transforms.ToTensor()(img) # 转换成tensor
print(img)
print("*"*100)
​
norm_img = transforms.Normalize((10,10,10), (1,1,1))(img) #进行规范化处理
​
print(norm_img)

输出如下:

tensor([[[177, 223],
         [ 71, 182]],
​
        [[153, 120],
         [173,  33]],
​
        [[162, 233],
         [194,  73]]], dtype=torch.int32)
***************************************************************************************
tensor([[[167, 213],
         [ 61, 172]],
​
        [[143, 110],
         [163,  23]],
​
        [[152, 223],
         [184,  63]]], dtype=torch.int32)

注意:在sklearn中,默认上式中的std和mean为数据每列的std和mean,sklearn会在标准化之前算出每一列的std和mean。

但是在api:Normalize中并没有帮我们计算,所以我们需要手动计算

  1. 当mean为全部数据的均值,std为全部数据的std的时候,才是进行了标准化。

  2. 如果mean(x)不是全部数据的mean的时候,std(y)也不是的时候,Normalize后的数据分布满足下面的关系

2.1.3 torchvision.transforms.Compose(transforms)

将多个transform组合起来使用。

例如

transforms.Compose([
     torchvision.transforms.ToTensor(), #先转化为Tensor
     torchvision.transforms.Normalize(mean,std) #在进行正则化
 ])

2.2 准备MNIST数据集的Dataset和DataLoader

准备训练集

import torchvision

#准备数据集,其中0.1307,0.3081为MNIST数据的均值和标准差,这样操作能够对其进行标准化
#因为MNIST只有一个通道(黑白图片),所以元组中只有一个值
dataset = torchvision.datasets.MNIST('/data', train=True, download=True,
                             transform=torchvision.transforms.Compose([
                               torchvision.transforms.ToTensor(),
                               torchvision.transforms.Normalize(
                                 (0.1307,), (0.3081,))
                             ]))
#准备数据迭代器                          
train_dataloader = torch.utils.data.DataLoader(dataset,batch_size=64,shuffle=True)

准备测试集

import torchvision

#准备数据集,其中0.1307,0.3081为MNIST数据的均值和标准差,这样操作能够对其进行标准化
#因为MNIST只有一个通道(黑白图片),所以元组中只有一个值
dataset = torchvision.datasets.MNIST('/data', train=False, download=True,
                             transform=torchvision.transforms.Compose([
                               torchvision.transforms.ToTensor(),
                               torchvision.transforms.Normalize(
                                 (0.1307,), (0.3081,))
                             ]))
#准备数据迭代器                          
train_dataloader = torch.utils.data.DataLoader(dataset,batch_size=64,shuffle=True)

3. 构建模型

补充:全连接层:当前一层的神经元和前一层的神经元相互链接,其核心操作就是y = wx​,即矩阵的乘法,实现对前一层的数据的变换

模型的构建使用了一个三层的神经网络,其中包括两个全连接层和一个输出层,第一个全连接层会经过激活函数的处理,将处理后的结果交给下一个全连接层,进行变换后输出结果

那么在这个模型中有两个地方需要注意:

  1. 激活函数如何使用
  2. 每一层数据的形状
  3. 模型的损失函数

3.1 激活函数的使用

前面介绍了激活函数的作用,常用的激活函数为Relu激活函数,他的使用非常简单

Relu激活函数由import torch.nn.functional as F提供,F.relu(x)即可对x进行处理

例如:

In [30]: b
Out[30]: tensor([-2, -1,  0,  1,  2])

In [31]: import torch.nn.functional as F

In [32]: F.relu(b)
Out[32]: tensor([0, 0, 0, 1, 2])

3.2 模型中数据的形状(【添加形状变化图形】)

  1. 原始输入数据为的形状:[batch_size,1,28,28]
  2. 进行形状的修改:[batch_size,28*28] ,(全连接层是在进行矩阵的乘法操作)
  3. 第一个全连接层的输出形状:[batch_size,28],这里的28是个人设定的,你也可以设置为别的
  4. 激活函数不会修改数据的形状
  5. 第二个全连接层的输出形状:[batch_size,10],因为手写数字有10个类别

构建模型的代码如下:

import torch
from torch import nn
import torch.nn.functional as F

class MnistNet(nn.Module):
    def __init__(self):
        super(MnistNet,self).__init__()
        self.fc1 = nn.Linear(28*28*1,28)  #定义Linear的输入和输出的形状
        self.fc2 = nn.Linear(28,10)  #定义Linear的输入和输出的形状

    def forward(self,x):
        x = x.view(-1,28*28*1)  #对数据形状变形,-1表示该位置根据后面的形状自动调整
        x = self.fc1(x) #[batch_size,28]
        x = F.relu(x)  #[batch_size,28]
        x = self.fc2(x) #[batch_size,10]

可以发现:pytorch在构建模型的时候形状上并不会考虑batch_size

3.3 模型的损失函数

首先,我们需要明确,当前我们手写字体识别的问题是一个多分类的问题,所谓多分类对比的是之前学习的2分类

回顾之前的课程,我们在逻辑回归中,我们使用sigmoid进行计算对数似然损失,来定义我们的2分类的损失。

对于这个softmax输出的结果,是在[0,1]区间,我们可以把它当做概率

和前面2分类的损失一样,多分类的损失只需要再把这个结果进行对数似然损失的计算即可

即:

最后,会计算每个样本的损失,即上式的平均值

我们把softmax概率传入对数似然损失得到的损失函数称为交叉熵损失

在pytorch中有两种方法实现交叉熵损失

  1. criterion = nn.CrossEntropyLoss()
    loss = criterion(input,target)
    
  2. #1. 对输出值计算softmax和取对数
    output = F.log_softmax(x,dim=-1)
    #2. 使用torch中带权损失
    loss = F.nll_loss(output,target)
    

带权损失定义为:

4. 模型的训练

训练的流程:

  1. 实例化模型,设置模型为训练模式
  2. 实例化优化器类,实例化损失函数
  3. 获取,遍历dataloader
  4. 梯度置为0
  5. 进行向前计算
  6. 计算损失
  7. 反向传播
  8. 更新参数
mnist_net = MnistNet()
optimizer = optim.Adam(mnist_net.parameters(),lr= 0.001)
def train(epoch):
    mode = True
    mnist_net.train(mode=mode) #模型设置为训练模型

    train_dataloader = get_dataloader(train=mode) #获取训练数据集
    for idx,(data,target) in enumerate(train_dataloader):
        optimizer.zero_grad() #梯度置为0
        output = mnist_net(data) #进行向前计算
        loss = F.nll_loss(output,target) #带权损失
        loss.backward()  #进行反向传播,计算梯度
        optimizer.step() #参数更新
        if idx % 10 == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, idx * len(data), len(train_dataloader.dataset),
                       100. * idx / len(train_dataloader), loss.item()))

5. 模型的保存和加载

5.1 模型的保存

torch.save(mnist_net.state_dict(),"model/mnist_net.pt") #保存模型参数
torch.save(optimizer.state_dict(), 'results/mnist_optimizer.pt') #保存优化器参数

5.2 模型的加载

mnist_net.load_state_dict(torch.load("model/mnist_net.pt"))
optimizer.load_state_dict(torch.load("results/mnist_optimizer.pt"))

6. 模型的评估

评估的过程和训练的过程相似,但是:

  1. 不需要计算梯度
  2. 需要收集损失和准确率,用来计算平均损失和平均准确率
  3. 损失的计算和训练时候损失的计算方法相同
  4. 准确率的计算:
    • 模型的输出为[batch_size,10]的形状
    • 其中最大值的位置就是其预测的目标值(预测值进行过sotfmax后为概率,sotfmax中分母都是相同的,分子越大,概率越大)
    • 最大值的位置获取的方法可以使用torch.max,返回最大值和最大值的位置
    • 返回最大值的位置后,和真实值([batch_size])进行对比,相同表示预测成功
def test():
    test_loss = 0
    correct = 0
    mnist_net.eval()  #设置模型为评估模式
    test_dataloader = get_dataloader(train=False) #获取评估数据集
    with torch.no_grad(): #不计算其梯度
        for data, target in test_dataloader:
            output = mnist_net(data)
            test_loss += F.nll_loss(output, target, reduction='sum').item()
            pred = output.data.max(1, keepdim=True)[1] #获取最大值的位置,[batch_size,1]
            correct += pred.eq(target.data.view_as(pred)).sum()  #预测准备样本数累加
    test_loss /= len(test_dataloader.dataset) #计算平均损失
    print('\nTest set: Avg. loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)\n'.format(
        test_loss, correct, len(test_dataloader.dataset),
        100. * correct / len(test_dataloader.dataset)))

7. 完整的代码如下:

import torch
from torch import nn
from torch import optim
import torch.nn.functional as F
import torchvision

train_batch_size = 64
test_batch_size = 1000
img_size = 28

def get_dataloader(train=True):
    assert isinstance(train,bool),"train 必须是bool类型"

    #准备数据集,其中0.1307,0.3081为MNIST数据的均值和标准差,这样操作能够对其进行标准化
    #因为MNIST只有一个通道(黑白图片),所以元组中只有一个值
    dataset = torchvision.datasets.MNIST('/data', train=train, download=True,
                                         transform=torchvision.transforms.Compose([
                                         torchvision.transforms.ToTensor(),
                                         torchvision.transforms.Normalize((0.1307,), (0.3081,)),]))
    #准备数据迭代器
    batch_size = train_batch_size if train else test_batch_size
    dataloader = torch.utils.data.DataLoader(dataset,batch_size=batch_size,shuffle=True)
    return dataloader

class MnistNet(nn.Module):
    def __init__(self):
        super(MnistNet,self).__init__()
        self.fc1 = nn.Linear(28*28*1,28)
        self.fc2 = nn.Linear(28,10)

    def forward(self,x):
        x = x.view(-1,28*28*1)
        x = self.fc1(x) #[batch_size,28]
        x = F.relu(x)  #[batch_size,28]
        x = self.fc2(x) #[batch_size,10]
        # return x
        return F.log_softmax(x,dim=-1)

mnist_net = MnistNet()
optimizer = optim.Adam(mnist_net.parameters(),lr= 0.001)
# criterion = nn.NLLLoss()
# criterion = nn.CrossEntropyLoss()
train_loss_list = []
train_count_list = []

def train(epoch):
    mode = True
    mnist_net.train(mode=mode)
    train_dataloader = get_dataloader(train=mode)
    print(len(train_dataloader.dataset))
    print(len(train_dataloader))
    for idx,(data,target) in enumerate(train_dataloader):
        optimizer.zero_grad()
        output = mnist_net(data)
        loss = F.nll_loss(output,target) #对数似然损失
        loss.backward()
        optimizer.step()
        if idx % 10 == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, idx * len(data), len(train_dataloader.dataset),
                       100. * idx / len(train_dataloader), loss.item()))

            train_loss_list.append(loss.item())
            train_count_list.append(idx*train_batch_size+(epoch-1)*len(train_dataloader))
            torch.save(mnist_net.state_dict(),"model/mnist_net.pkl")
            torch.save(optimizer.state_dict(), 'results/mnist_optimizer.pkl')


def test():
    test_loss = 0
    correct = 0
    mnist_net.eval()
    test_dataloader = get_dataloader(train=False)
    with torch.no_grad():
        for data, target in test_dataloader:
            output = mnist_net(data)
            test_loss += F.nll_loss(output, target, reduction='sum').item()
            pred = output.data.max(1, keepdim=True)[1] #获取最大值的位置,[batch_size,1]
            correct += pred.eq(target.data.view_as(pred)).sum()
    test_loss /= len(test_dataloader.dataset)
    print('\nTest set: Avg. loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)\n'.format(
        test_loss, correct, len(test_dataloader.dataset),
        100. * correct / len(test_dataloader.dataset)))


if __name__ == '__main__':

    test()  
    for i in range(5): #模型训练5轮
        train(i)
        test()

使用Pytorch实现手写数字识别

import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import datasets, transforms
from torch.utils.data import DataLoader

#定义一些参数
BATCH_SIZE = 64
EPOCHS = 10
# DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

#图像预处理
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307,), (0.3081,))
    ])

#训练集
train_set = datasets.MNIST('data', train=True, transform=transform, download=True)
train_loader = DataLoader(train_set,
                          batch_size=BATCH_SIZE,
                          shuffle=True)

#测试集
test_set = datasets.MNIST('data', train=False, transform=transform, download=True)
test_loader = DataLoader(test_set,
                        batch_size=BATCH_SIZE,
                        shuffle=True)


# 搭建模型
class ConvNet(nn.Module):
    # 图像输入是(batch,1,28,28)
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 10, (3, 3))       # 输入通道数为1,输出通道数为10,卷积核(3,3)
        self.conv2 = nn.Conv2d(10, 32, (3, 3))      # 输入通道数为10,输出通道数为32,卷积核(3,3)
        self.fc1 = nn.Linear(12 * 12 * 32, 100)     #定义Linear全链接层 的输入形状(不包含batch_size) 12 * 12 * 32,输出形状 100
        self.fc2 = nn.Linear(100, 10)               #定义Linear全链接层 的输入形状(不包含batch_size) 100,输出形状 10
        self.dropout =nn.Dropout()                  #元素归零的概率。默认值:0.5

    def forward(self, x):
        x = self.conv1(x)  # (batch,10,26,26)
        #BN:每个隐层神经元的激活值做BN,可以想象成每个隐层又加上了一层BN操作层,它位于A=X*W+B激活值获得之后,非线性函数变换之前
        x = F.relu(x)

        x = self.conv2(x)  # (batch,32,24,24)
        x = F.relu(x)
        x = F.max_pool2d(x, (2, 2))  # (batch,32,12,12)

        x = x.view(x.size(0), -1)  # flatten 形状变成 (batch,12*12*32)
        x = self.fc1(x)  # (batch,100)
        x = F.relu(x)

        x = self.fc2(x)  # (batch,10)
        out = F.log_softmax(x, dim=1)  # softmax激活并取对数,数值上更稳定
        return out


# 定义模型和优化器
model = ConvNet().to(DEVICE)  # 模型移至GPU
optimizer = torch.optim.Adam(model.parameters())


# 定义训练函数
def train(model, device, train_loader, optimizer, epoch):  # 跑一个epoch
    # 开启训练模式,即启用BatchNormalization和Dropout等。仅仅当模型中有Dropout和BatchNorm是才会有影响。
    model.train()

    for batch_idx, (data, target) in enumerate(train_loader):   # 每次产生一个batch
        data, target = data.to(device), target.to(device)       # 产生的数据移至GPU
        output = model(data)
        """
        #1. 对输出值计算softmax和取对数
        output = F.log_softmax(x,dim=-1)
        #2. 使用torch中带权损失
        loss = F.nll_loss(output,target)
        """
        #交叉熵损失:nn.CrossEntropyLoss(),常用于分类问题
        loss = F.nll_loss(output, target)  # CrossEntropyLoss = log_softmax + NLLLoss
        optimizer.zero_grad()   # 设置当前该次循环时的参数梯度置为0,即梯度清零
        loss.backward()         # 反向传播求所有参数梯度
        optimizer.step()        # 沿负梯度方向 更新参数的值
        if (batch_idx + 1) % 10 == 0:
            # print("批量大小:",len(data))
            # print("batch批数:",len(train_loader))
            # print("样本总数:",len(train_loader.dataset))

            # len(data) 批量大小,len(train_loader)为batch批数,len(train_loader.dataset)为样本总数
            print('Train Epoch: {} [{}/{} ({:.1f}%)]\tLoss: {:.6f}'.format(
                epoch, (batch_idx + 1) * len(data), len(train_loader.dataset),
                       100. * (batch_idx + 1) / len(train_loader), loss.item()))


# 定义测试函数
def eval_test(model, device, test_loader):
    # 测试模式,不启用BatchNormalization和Dropout。仅仅当模型中有Dropout和BatchNorm是才会有影响。
    model.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():  # 避免梯度跟踪,不计算其梯度
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            test_loss += F.nll_loss(output, target, reduction='sum').item()  # 将一批损失相加
            # output.max 效果等同于 pred = torch.argmax(output, dim=1, keepdim=True)
            pred = output.max(1, keepdim=True)[1]  # 找到概率最大的下标,获取最大值的位置
            # print("最大值结果:",output.max(1, keepdim=True)[0])
            # print("概率最大的下标:",pred)
            # print("真实标签的下标:",target.view_as(pred))
            correct += pred.eq(target.view_as(pred)).sum().item() #预测准备样本数累加

    # len(data) 批量大小,len(test_loader)为batch批数,len(test_loader.dataset)为样本总数
    test_loss /= len(test_loader.dataset)
    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.1f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))

"""
max()有两种用法
    1.torch.max(input_tensor, dim, [keepdim]) 直接传入一个input_tensor,返回一个tuple,
      前者为最大值结果,后者为indices(效果同argmax)
    2.output.max() 与 torch.max()类似,只不过output.max()无需传入input_tensor
"""
# 开始训练
for epoch in range(1, EPOCHS + 1):
    train(model, DEVICE, train_loader, optimizer, epoch)
    eval_test(model, DEVICE, test_loader)
发布了450 篇原创文章 · 获赞 151 · 访问量 23万+

猜你喜欢

转载自blog.csdn.net/zimiao552147572/article/details/105417393